
ConPaaS Documentation
Release 1.4.2

The ConPaaS team <info@conpaas.eu>

February 04, 2015

Contents

1 Introduction 1

2 Installation 3
2.1 Director installation . 3
2.2 Command line tool installation . 8
2.3 Frontend installation . 10
2.4 Creating A ConPaaS Services VM Image . 11
2.5 ConPaaS on Amazon EC2 . 12
2.6 ConPaaS on OpenNebula . 13
2.7 ConPaaS in a Nutshell . 14

3 User Guide 17
3.1 Usage overview . 17
3.2 Tutorial: hosting WordPress in ConPaaS . 20
3.3 The PHP Web hosting service . 20
3.4 The Java Web hosting service . 23
3.5 The MySQL Database Service . 23
3.6 The Scalarix key-value store service . 25
3.7 The MapReduce service . 25
3.8 The TaskFarming service . 26
3.9 The XtreemFS service . 26
3.10 The HTC service . 28
3.11 ConPaaS in a VirtualBox Nutshell . 29

4 Internals 31
4.1 Introduction . 31
4.2 Service Organization . 32
4.3 Implementing a new ConPaaS service using blueprints . 40
4.4 Implementing a new ConPaaS service by hand . 41
4.5 Integrating the new service with the frontend . 48

i

ii

CHAPTER 1

Introduction

ConPaaS (http://www.conpaas.eu) is an open-source runtime environment for hosting applications in the cloud
which aims at offering the full power of the cloud to application developers while shielding them from the associ-
ated complexity of the cloud.

ConPaaS is designed to host both high-performance scientific applications and online Web applications. It runs on
a variety of public and private clouds, and is easily extensible. ConPaaS automates the entire life-cycle of an ap-
plication, including collaborative development, deployment, performance monitoring, and automatic scaling. This
allows developers to focus their attention on application-specific concerns rather than on cloud-specific details.

ConPaaS is organized as a collection of services, where each service acts as a replacement for a commonly used
runtime environment. For example, to replace a MySQL database, ConPaaS provides a cloud-based MySQL
service which acts as a high-level database abstraction. The service uses real MySQL databases internally, and
therefore makes it easy to port a cloud application to ConPaaS. Unlike a regular centralized database, however, it
is self-managed and fully elastic: one can dynamically increase or decrease its processing capacity by requesting
it to reconfigure itself with a different number of virtual machines.

1

http://www.conpaas.eu

ConPaaS Documentation, Release 1.4.2

2 Chapter 1. Introduction

CHAPTER 2

Installation

The central component of ConPaaS is called the ConPaaS Director (cpsdirector). It is responsible for handling
user authentication, creating new applications, handling their life-cycle and much more. cpsdirector is a web
service exposing all its functionalities via an HTTP-based API.

ConPaaS can be used either via a command line interface (called cpsclient) or through a web frontend
(cpsfrontend). Recently a new experimental command line interface called cps-tools has become available (note:
cps-tools requires Python 2.7). This document explains how to install and configure all the aforementioned com-
ponents.

ConPaaS’s cpsdirector and its two clients, cpsclient and cpsfrontend, can be installed on your own hardware or
on virtual machines running on public or private clouds. If you wish to install them on Amazon EC2, the Official
Debian Wheezy EC2 image (ami-1d620e74) is known to work well. Please note that the root account is disabled
and that you should instead login as admin.

ConPaaS services are designed to run either in an OpenNebula cloud installation or in the Amazon Web Services
cloud.

Installing ConPaaS requires to take the following steps:

1. Choose a VM image customized for hosting the services, or create a new one. Details on how to do this vary
depending on the choice of cloud where ConPaaS will run. Instructions on how to find or create a ConPaaS
image suitable to run on Amazon EC2 can be found in ConPaaS on Amazon EC2. The section ConPaaS on
OpenNebula describes how to create a ConPaaS image for OpenNebula.

2. Install and configure cpsdirector as explained in Director installation. All system configuration takes place
in the director.

3. Install and configure cpsclient as explained in Installing and configuring cpsclient.py.

4. Install and configure cps-tools as explained in Installing and configuring cps-tools.

5. Install cpsfrontend and configure it to use your ConPaaS director as explained in Frontend installation.

2.1 Director installation

The ConPaaS Director is a web service that allows users to manage their ConPaaS applications. Users can create,
configure and terminate their cloud applications through it. This section describes the process of setting up a Con-
PaaS director on a Debian GNU/Linux system. Although the ConPaaS director might run on other distributions,
only Debian versions 6.0 (Squeeze) and 7.0 (Wheezy) are officially supported. Also, only official Debian APT
repositories should be enabled in /etc/apt/sources.list and /etc/apt/sources.list.d/.

cpsdirector is available here: http://www.conpaas.eu/dl/cpsdirector-1.x.x.tar.gz. The tarball includes an instal-
lation script called install.sh for your convenience. You can either run it as root or follow the installation
procedure outlined below in order to setup your ConPaaS Director installation.

1. Install the required packages:

3

https://console.aws.amazon.com/ec2/v2/home?region=us-east-1#Images:filter=all-images;platform=all-platforms;visibility=public-images;search=ami-1d620e74
https://console.aws.amazon.com/ec2/v2/home?region=us-east-1#Images:filter=all-images;platform=all-platforms;visibility=public-images;search=ami-1d620e74
http://www.conpaas.eu/dl/cpsdirector-1.x.x.tar.gz

ConPaaS Documentation, Release 1.4.2

$ sudo apt-get update
$ sudo apt-get install build-essential python-setuptools python-dev
$ sudo apt-get install apache2 libapache2-mod-wsgi libcurl4-openssl-dev

2. Make sure that your system’s time and date are set correctly by installing and running ntpdate:

$ sudo apt-get install ntpdate
$ sudo ntpdate 0.us.pool.ntp.org

>> If the NTP socket is in use, you can type:
$ sudo service ntp stop
>> and again
$ sudo ntpdate 0.us.pool.ntp.org

3. Download http://www.conpaas.eu/dl/cpsdirector-1.x.x.tar.gz and uncompress it

4. Run make install as root

5. After all the required packages are installed, you will get prompted for your hostname. Please provide your
public IP address / hostname

6. Edit /etc/cpsdirector/director.cfg providing your cloud configuration. Among other things,
you will have to choose an Amazon Machine Image (AMI) in case you want to use ConPaaS on Amazon
EC2, or an OpenNebula image if you want to use ConPaaS on OpenNebula. Section ConPaaS on Amazon
EC2 explains how to use the Amazon Machine Images provided by the ConPaaS team, as well as how to
make your own images if you wish to do so. A description of how to create an OpenNebula image suitable
for ConPaaS is available in ConPaaS on OpenNebula.

The installation process will create an Apache VirtualHost for the ConPaaS director in
/etc/apache2/sites-available/conpaas-director.conf for Apache 2.4 or
/etc/apache2/sites-available/conpaas-director for older versions of Apache. There
should be no need for you to modify such a file, unless its defaults conflict with your Apache configuration.

Run the following commands as root to start your ConPaaS director for the first time:

$ sudo a2enmod ssl
$ sudo a2enmod wsgi
$ sudo a2ensite conpaas-director
$ sudo service apache2 restart

If you experience any problems with the previously mentioned commands, it might be that the default VirtualHost
created by the ConPaaS director installation process conflicts with your Apache configuration. The Apache Virtual
Host documentation might be useful to fix those issues: http://httpd.apache.org/docs/2.2/vhosts/.

Finally, you can start adding users to your ConPaaS installation as follows:

$ sudo cpsadduser.py

2.1.1 SSL certificates

ConPaaS uses SSL certificates in order to secure the communication between you and the director, but also to
ensure that only authorized parties such as yourself and the various component of ConPaaS can interact with the
system.

It is therefore crucial that the SSL certificate of your director contains the proper information. In particular, the
commonName field of the certificate should carry the public hostname of your director, and it should match
the hostname part of DIRECTOR_URL in /etc/cpsdirector/director.cfg. The installation procedure
takes care of setting up such a field. However, should your director hostname change, please ensure you run the
following commands:

$ sudo cpsconf.py
$ sudo service apache2 restart

4 Chapter 2. Installation

http://www.conpaas.eu/dl/cpsdirector-1.x.x.tar.gz
http://httpd.apache.org/docs/2.2/vhosts/

ConPaaS Documentation, Release 1.4.2

2.1.2 Director database

The ConPaaS Director uses a SQLite database to store information about registered users and running services.
It is not normally necessary for ConPaaS administrators to directly access such a database. However, should the
need arise, it is possible to inspect and modify the database as follows:

$ sudo apt-get install sqlite3
$ sudo sqlite3 /etc/cpsdirector/director.db

If you have an existing installation (version 1.4.0 and earlier) you should upgrade your database to contain the
extra uuid field needed for external IdP usage (see next topic) and the extra openid field needed for OpenID
support:

$ sudo add-user-columns-to-db.sh

This script will warn you when you try to upgrade an already upgraded database.

On a fresh installation the database will be created on the fly.

2.1.3 Contrail IdP and SimpleSAML

ConPaaS can optionally delegate its user authentication to an external service. For registration and login through
the Contrail Identification Provider you have to install the SimpleSAML package simplesamlphp-1.11.0 as fol-
lows:

$ wget http://simplesamlphp.googlecode.com/files/simplesamlphp-1.11.0.tar.gz
$ tar xzf simplesamlphp-1.11.0.tar.gz
$ cd simplesamlphp-1.11.0
$ cd cert ; openssl req -newkey rsa:2048 -new -x509 -days 3652 -nodes -out saml.crt -keyout saml.pem

Edit file ../metadata/saml20-idp-remote.php and replace the $metadata array by the
code found in the simpleSAMLphp flat file format part at the end of the browser output of
https://multi.contrail.xlab.si/simplesaml/saml2/idp/metadata.php?output=xhtml .

Modify the authentication sources to contain the following lines (do not copy the line numbers):

$ cd ../config ; vi authsources.php
25 // ’idp’ => NULL,
26 ’idp’ => ’https://multi.contrail.xlab.si/simplesaml/saml2/idp/metadata.php’,

32 // next lines added by (your name)
33 ’privatekey’ => ’saml.pem’,
34 ’certificate’ => ’saml.crt’,

Copy your SimpleSAML tree to /usr/share

$ cd ../../
$ tar cf - simplesamlphp-1.11.0 | (cd /usr/share ; sudo tar xf -)

Change ownerships:

$ cd /usr/share/simplesamlphp-1.11.0
$ sudo chown www-data www log
$ sudo chgrp www-data www log

Now edit /etc/apache2/sites-enabled/default-ssl.conf to contain the following lines (line
numbers may vary depending on your current situation):

5 Alias /simplesaml /usr/share/simplesamlphp-1.11.0/www

18 <Directory /usr/share/simplesamlphp-1.11.0/www>
19 Options Indexes FollowSymLinks MultiViews
20 AllowOverride None

2.1. Director installation 5

https://multi.contrail.xlab.si/simplesaml/saml2/idp/metadata.php?output=xhtml

ConPaaS Documentation, Release 1.4.2

21 Order allow,deny
22 allow from all
23 </Directory>

And the last thing to do: register your director domain name or IP at contrail@lists.xlab.si. This will enable you
to use the federated login service provided by the Contrail project.

2.1.4 Multi-cloud support

ConPaaS services can be created and scaled on multiple heterogeneous clouds.

In order to configure cpsdirector to use multiple clouds, you need to set the OTHER_CLOUDS vari-
able in the [iaas] section of /etc/cpsdirector/director.cfg. For each cloud name defined in
OTHER_CLOUDS you need to create a new configuration section named after the cloud itself. Please refer to
/etc/cpsdirector/director.cfg.multicloud-example for an example.

2.1.5 Virtual Private Networks with IPOP

Network connectivity between private clouds running on different networks can be achieved in ConPaaS by using
IPOP (IP over P2P). This is useful in particular to deploy ConPaaS instances across multiple clouds. IPOP adds a
virtual network interface to all ConPaaS instances belonging to an application, allowing services to communicate
over a virtual private network as if they were deployed on the same LAN. This is achieved transparently to the user
and applications - the only configuration needed to enable IPOP is to determine the network’s base IP address,
mask, and the number of IP addresses in this virtual network that are allocated to each service.

VPN support in ConPaaS is per-application: each application you create will get its own isolated IPOP Virtual
Private Network. VMs running in the same application will be able to communicate with each other.

In order to enable IPOP you need to set the following variables in /etc/cpsdirector/director.cfg:

• VPN_BASE_NETWORK

• VPN_NETMASK

• VPN_SERVICE_BITS

Unless you need to access 172.16.0.0/12 networks, the default settings available in
/etc/cpsdirector/director.cfg.example are probably going to work just fine.

The maximum number of services per application, as well as the number of agents per service, is influenced by
your choice of VPN_NETMASK and VPN_SERVICE_BITS:

services_per_application = 2^VPN_SERVICE_BITS
agents_per_service = 2^(32 - NETMASK_CIDR - VPN_SERVICE_BITS) - 1

For example, by using 172.16.0.0 for VPN_BASE_NETWORK, 255.240.0.0 (/12) for VPN_NETMASK, and 5
VPN_SERVICE_BITS, you will get a 172.16.0.0/12 network for each of your applications. Such a network space
will be then logically partitioned between services in the same application. With 5 bits to identify the service, you
will get a maximum number of 32 services per application (2^5) and 32767 agents per service (2^(32-12-5)-1).

Optional: specify your own bootstrap nodes. When two VMs use IPOP, they need a bootstrap node to find each
other. IPOP comes with a default list of bootstrap nodes from PlanetLab servers which is enough for most use
cases. However, you may want to specify your own bootstrap nodes (replacing the default list). Uncomment and
set VPN_BOOTSTRAP_NODES to the list of addresses of your bootstrap nodes, one address per line. A bootstrap
node address specifies a protocol, an IP address and a port. For example:

VPN_BOOTSTRAP_NODES =
udp://192.168.35.2:40000
tcp://192.168.122.1:40000
tcp://172.16.98.5:40001

6 Chapter 2. Installation

http://www.grid-appliance.org/wiki/index.php/IPOP

ConPaaS Documentation, Release 1.4.2

2.1.6 Troubleshooting

If for some reason your Director installation is not behaving as expected, here are a few frequent issues and their
solutions.

If you cannot create services, try to run this on the machine holding your Director:

1. Run the cpscheck.py command as root to attempt an automatic detection of possible misconfigurations.

2. Check your system’s time and date settings as explained previously.

3. Test network connectivity between the director and the virtual machines deployed on the cloud(s) you are
using.

4. Check the contents of /var/log/apache2/director-access.log and
/var/log/apache2/director-error.log.

If services get created, but they fail to startup properly, you should try to ssh into your manager VM as root and:

1. Make sure that a ConPaaS manager process has been started:

root@conpaas:~# ps x | grep cpsmanage[r]
968 ? Sl 0:02 /usr/bin/python /root/ConPaaS/sbin/manager/php-cpsmanager -c /root/config.cfg -s 192.168.122.15

2. If a ConPaaS manager process has not been started, you should check if the manager VM can download a
copy of the ConPaaS source code from the director. From the manager VM:

root@conpaas:~# wget --ca-certificate /etc/cpsmanager/certs/ca_cert.pem \
‘awk ’/BOOTSTRAP/ { print $3 }’ /root/config.cfg‘/ConPaaS.tar.gz

The URL used by your manager VM to download the ConPaaS source code depends on the value you have
set on your Director in /etc/cpsdirector/director.cfg for the variable DIRECTOR_URL.

3. See if your manager’s port 443 is open and reachable from your Director. In the following example, our
manager’s IP address is 192.168.122.15 and we are checking if the director can contact the manager on port
443:

root@conpaas-director:~# apt-get install nmap
root@conpaas-director:~# nmap -p443 192.168.122.15
Starting Nmap 6.00 (http://nmap.org) at 2013-05-14 16:17 CEST
Nmap scan report for 192.168.122.15
Host is up (0.00070s latency).
PORT STATE SERVICE
443/tcp open https

Nmap done: 1 IP address (1 host up) scanned in 0.08 seconds

4. Check the contents of /root/manager.err, /root/manager.out and
/var/log/cpsmanager.log.

5. If the Director fails to respond to requests and you receive errors such as No ConPaaS Director at
the provided URL: HTTP Error 403: Forbidden or 403 Access Denied, you need
to allow access to the root file system, which is denied by default in newer versions of apache2. You
can fix this by modifying the file /etc/apache2/apache2.conf. In particular, you need to replace
these lines:

<Directory />
Options FollowSymLinks
AllowOverride all
Order deny,allow
Allow from all

</Directory>

with these others:

2.1. Director installation 7

ConPaaS Documentation, Release 1.4.2

<Directory />
Options Indexes FollowSymLinks Includes ExecCGI
AllowOverride all
Order deny,allow
Allow from all

</Directory>

2.2 Command line tool installation

There are two command line clients: an old one called cpsclient.py and a more recent one called
cps-tools.

2.2.1 Installing and configuring cpsclient.py

The command line tool cpsclient can be installed as root or as a regular user. Please note that libcurl develop-
ment files (binary package libcurl4-openssl-dev on Debian/Ubuntu systems) need to be installed on your
system.

As root:

$ sudo easy_install http://www.conpaas.eu/dl/cpsclient-1.x.x.tar.gz

(do not forget to replace 1.x.x with the exact number of the ConPaaS release you are using)

Or, if you do not have root privileges, cpsclient can also be installed in a Python virtual environment if
virtualenv is available on your machine:

$ virtualenv conpaas # create the ’conpaas’ virtualenv
$ cd conpaas
$ source bin/activate # activate it
$ easy_install http://www.conpaas.eu/dl/cpsclient-1.x.x.tar.gz

Configuring cpsclient.py:

$ cpsclient.py credentials
Enter the director URL: https://your.director.name:5555
Enter your username: xxxxx
Enter your password:
Authentication succeeded

2.2.2 Installing and configuring cps-tools

The command line cps-tools is a more recent command line client to interact with ConPaaS. It has essentially
a modular internal architecture that is easier to extend. It has also “object-oriented” arguments where “ConPaaS”
objects are services, users, clouds and applications. The argument consists in stating the “object” first and then
calling a sub-command on it. It also replaces the command line tool cpsadduser.py.

cps-tools requires:

• Python 2.7

• Python argparse module

• Python argcomplete module

If these are not yet installed, first follow the guidelines in Installing Python2.7 and virtualenv.

Installing cps-tools:

8 Chapter 2. Installation

ConPaaS Documentation, Release 1.4.2

$ tar -xaf cps-tools-1.x.x.tar.gz
$ cd cps-tools-1.x.x
$./configure --sysconf=/etc
$ sudo make install

or:

$ make prefix=$HOME/src/virtualenv-1.11.4/ve install |& tee my-make-install.log
$ cd ..
$ pip install simplejson |& tee sjson.log
$ apt-get install libffi-dev |& tee libffi.log
$ pip install cpslib-1.x.x.tar.gz |& tee my-ve-cpslib.log

Configuring cps-tools:

$ mkdir -p $HOME/.conpaas
$ cp /etc/cps-tools.conf $HOME/.conpaas/
$ vim $HOME/.conpaas/cps-tools.conf
>> update ’director_url’ and ’username’
>> do not update ’password’ unless you want to execute scripts that must retrieve a certificate without interaction
$ cps-user get_certificate
>> enter you password
>> now you can use cps-tools commands

2.2.3 Installing Python2.7 and virtualenv

Recommended installation order is first python2.7, then virtualenv (you will need about 0.5GB of free
disk space). Check if the following packages are installed, and install them if not:

apt-get install gcc
apt-get install libreadline-dev
apt-get install -t squeeze-backports libsqlite3-dev libsqlite3-0
apt-get install tk8.4-dev libgdbm-dev libdb-dev libncurses-dev

Installing python2.7:

$ mkdir ~/src (choose a directory)
$ cd ~/src
$ wget --no-check-certificate http://www.python.org/ftp/python/2.7.2/Python-2.7.2.tgz
$ tar xzf Python-2.7.2.tgz
$ cd Python-2.7.2
$ mkdir $HOME/.localpython
$./configure --prefix=$HOME/.localpython |& tee my-config.log
$ make |& tee my-make.log
>> here you may safely ignore complaints about missing modules: bsddb185 bz2 dl imageop sunaudiodev
$ make install |& tee my-make-install.log

Installing virtualenv (here version 1.11.4):

$ cd ~/src
$ wget --no-check-certificate http://pypi.python.org/packages/source/v/virtualenv/virtualenv-1.11.4.tar.gz
$ tar xzf virtualenv-1.11.4.tar.gz
$ cd virtualenv-1.11.4
$ $HOME/.localpython/bin/python setup.py install (install virtualenv using P2.7)

$ $HOME/.localpython/bin/virtualenv ve -p $HOME/.localpython/bin/python2.7
New python executable in ve/bin/python2.7
Also creating executable in ve/bin/python
Installing setuptools, pip...done.
Running virtualenv with interpreter $HOME/.localpython/bin/python2.7

Activate virtualenv:

2.2. Command line tool installation 9

ConPaaS Documentation, Release 1.4.2

$ alias startVE=’source $HOME/src/virtualenv-1.11.4/ve/bin/activate’
$ alias stopVE=’deactivate’
$ startVE
(ve)$ python -V
Python 2.7.2
(ve)$

Install python argparse and argcomplete modules:

(ve)$ pip install argparse
(ve)$ pip install argcomplete
(ve)$ activate-global-python-argcomplete

2.3 Frontend installation

As for the Director, only Debian versions 6.0 (Squeeze) and 7.0 (Wheezy) are supported, and no external APT
repository should be enabled. In a typical setup Director and Frontend are installed on the same host, but such
does not need to be the case.

The ConPaaS Frontend can be downloaded from http://www.conpaas.eu/dl/cpsfrontend-1.x.x.tar.gz.

After having uncompressed it you should install the required Debian packages:

$ sudo apt-get install libapache2-mod-php5 php5-curl

Copy all the files contained in the www directory underneath your web server document root. For example:

$ sudo cp -a www/ /var/www/

Copy conf/main.ini and conf/welcome.txt in your ConPaaS Director configuration folder
(/etc/cpsdirector). Modify those files to suit your needs:

$ sudo cp conf/{main.ini,welcome.txt} /etc/cpsdirector/

Create a config.php file in the web server directory where you have chosen to install the frontend.
config-example.php is a good starting point:

$ sudo cp www/config-example.php /var/www/config.php

Note that config.php must contain the CONPAAS_CONF_DIR option, pointing to the directory mentioned in
the previous step

By default, PHP sets a default maximum size for uploaded files to 2Mb (and 8Mb to HTTP POST requests). How-
ever, in the web frontend, users will need to upload larger files (for example, a WordPress tarball is about 5Mb, a
MySQL dump can be tens of Mb). To set higher limits, set the properties post_max_size and upload_max_filesize
in file /etc/php5/apache2/php.ini. Note that property upload_max_filesize cannot be larger than prop-
erty post_max_size.

Enable SSL if you want to use your frontend via https, for example by issuing the following commands:

$ sudo a2enmod ssl
$ sudo a2ensite default-ssl

Details about the SSL certificate you want to use have to be specified in
/etc/apache2/sites-available/default-ssl.

As a last step, restart your Apache web server:

$ sudo service apache2 restart

At this point, your front-end should be working!

10 Chapter 2. Installation

http://www.conpaas.eu/dl/cpsfrontend-1.x.x.tar.gz

ConPaaS Documentation, Release 1.4.2

2.4 Creating A ConPaaS Services VM Image

Various services require certain packages and configurations to be present in the VM image. ConPaaS provides
facilities for creating specialized VM images that contain these dependencies. Furthermore, for the convenience
of users, there are prebuilt Amazon AMIs that contain the dependencies for all available services. If you intend
to run ConPaaS on Amazon EC2 and do not need a specialized VM image, then you can skip this section and
proceed to ConPaaS on Amazon EC2.

2.4.1 Configuring your VM image

The configuration file for customizing your VM image is located at conpaas-services/scripts/create_vm/create-
img-script.cfg.

In the CUSTOMIZABLE section of the configuration file, you can define whether you plan to run ConPaaS on
Amazon EC2 or OpenNebula. Depending on the virtualization technology that your target cloud uses, you should
choose either KVM or Xen for the hypervisor. Note that for Amazon EC2 this variable needs to be set to Xen.
Please do not make the recommended size for the image file smaller than the default. The optimize flag enables
certain optimizations to reduce the necessary packages and disk size. These optimizations allow for smaller VM
images and faster VM startup.

In the SERVICES section of the configuration file, you have the opportunity to disable any service that you do
not need in your VM image. If a service is disabled, its package dependencies are not installed in the VM image.
Paired with the optimize flag, the end result will be a minimal VM image that runs only what you need.

Note that te configuration file contains also a NUTSHELL section. The settings in this section are explained in
details in ConPaaS in a Nutshell. However, in order to generete a regular customized VM image make sure that
both container and nutshell flags in this section are set to false.

Once you are done with the configuration, you should run this command in the create_vm directory:

$ python create-img-script.py

This program generates a script file named create-img-conpaas.sh. This script is based on your specific configu-
rations.

2.4.2 Creating your VM image

To create the image you can execute create-img-conpaas.sh in any 64-bit Debian or Ubuntu machine. Please note
that you will need to have root privileges on such a system. In case you do not have root access to a Debian
or Ubuntu machine please consider installing a virtual machine using your favorite virtualization technology, or
running a Debian/Ubuntu instance in the cloud.

1. Make sure your system has the following executables installed (they are usually located in /sbin or
/usr/sbin, so make sure these directories are in your $PATH): dd parted losetup kpartx mkfs.ext3 tune2fs
mount debootstrap chroot umount grub-install

2. It is particularly important that you use Grub version 2. To install it:

sudo apt-get install grub2

3. Execute create-img-conpaas.sh as root.

The last step can take a very long time. If all goes well, the final VM image is stored as conpaas.img. This file is
later registered to your target IaaS cloud as your ConPaaS services image.

2.4.3 If things go wrong

Note that if anything fails during the image file creation, the script will stop and it will try to revert any change it
has done. However, it might not always reset your system to its original state. To undo everything the script has
done, follow these instructions:

2.4. Creating A ConPaaS Services VM Image 11

ConPaaS Documentation, Release 1.4.2

1. The image has been mounted as a separate file system. Find the mounted directory using command df -h.
The directory should be in the form of /tmp/tmp.X.

2. There may be a dev and a proc directories mounted inside it. Unmount everything using:

sudo umount /tmp/tmp.X/dev /tmp/tmp.X/proc /tmp/tmp.X

3. Find which loop device you are using:

sudo losetup -a

4. Remove the device mapping:

sudo kpartx -d /dev/loopX

5. Remove the binding of the loop device:

sudo losetup -d /dev/loopX

6. Delete the image file

7. Your system should be back to its original state.

2.5 ConPaaS on Amazon EC2

The Web Hosting Service is capable of running over the Elastic Compute Cloud (EC2) of Amazon Web Services
(AWS). This section describes the process of configuring an AWS account to run the Web Hosting Service. You
can skip this section if you plan to install ConPaaS over OpenNebula.

If you are new to EC2, you will need to create an account on the Amazon Elastic Compute Cloud. A very good
introduction to EC2 is Getting Started with Amazon EC2 Linux Instances.

2.5.1 Pre-built Amazon Machine Images

ConPaaS requires the usage of an Amazon Machine Image (AMI) to contain the dependencies of its processes.
For your convenience we provide a pre-built public AMI, already configured and ready to be used on Amazon
EC2, for each availability zone supported by ConPaaS. The AMI IDs of said images are:

• ami-dd8bd0ed United States West (Oregon)

• ami-802e6ce8 United States East (Northern Virginia)

• ami-f158d686 Europe West (Ireland)

You can use one of these values when configuring your ConPaaS director installation as described in Director
installation.

2.5.2 Registering your custom VM image to Amazon EC2

Using pre-built Amazon Machine Images is the recommended way of running ConPaaS on Amazon EC2, as
described in the previous section. However, you can also create a new Amazon Machine Image yourself, for
example in case you wish to run ConPaaS in a different Availability Zone or if you prefer to use a custom services
image. If this is the case, you should have already created your VM image (conpaas.img) as explained in Creating
A ConPaaS Services VM Image.

Amazon AMIs are either stored on Amazon S3 (i.e. S3-backed AMIs) or on Elastic Block Storage (i.e. EBS-
backed AMIs). Each option has its own advantages; S3-backed AMIs are usually more cost-efficient, but if you
plan to use t1.micro (free tier) your VM image should be hosted on EBS.

For an EBS-backed AMI, you should either create your conpaas.img on an Amazon EC2 instance, or transfer
the image to one. Once conpaas.img is there, you should execute register-image-ec2-ebs.sh as root on the EC2

12 Chapter 2. Installation

http://aws.amazon.com/ec2/
http://docs.amazonwebservices.com/AWSEC2/latest/GettingStartedGuide/

ConPaaS Documentation, Release 1.4.2

instance to register your AMI. The script requires your EC2_ACCESS_KEY and EC2_SECRET_KEY to pro-
ceed. At the end, the script will output your new AMI ID. You can check this in your Amazon dashboard in the
AMI section.

For a S3-backed AMI, you do not need to register your image from an EC2 instance. Simply run register-image-
ec2-s3.sh where you have created your conpaas.img. Note that you need an EC2 certificate with private key to
be able to do so. Registering an S3-backed AMI requires administrator privileges. More information on Amazon
credetials can be found at About AWS Security Credentials.

2.5.3 Security Group

An AWS security group is an abstraction of a set of firewall rules to limit inbound traffic. The default policy of a
new group is to deny all inbound traffic. Therefore, one needs to specify a whitelist of protocols and destination
ports that are accessible from the outside. The following ports should be open for all running instances:

• TCP ports 80, 443, 5555, 8000, 8080 and 9000 – used by the Web Hosting service

• TCP ports 3306, 4444, 4567, 4568 – used by the MySQL service with Galera extensions

• TCP ports 8020, 8021, 8088, 50010, 50020, 50030, 50060, 50070, 50075, 50090, 50105, 54310 and 54311
– used by the Map Reduce service

• TCP ports 4369, 14194 and 14195 – used by the Scalarix service

• TCP ports 2633, 8475, 8999 – used by the TaskFarm service

• TCP ports 32636, 32638 and 32640 – used by the XtreemFS service

AWS documentation is available at http://docs.amazonwebservices.com/AWSEC2/latest/UserGuide/index.html?using-
network-security.html.

2.6 ConPaaS on OpenNebula

The Web Hosting Service is capable of running over an OpenNebula installation. This section describes the
process of configuring OpenNebula to run ConPaaS. You can skip this section if you plan to deploy ConPaaS over
Amazon Web Services.

2.6.1 Registering your ConPaaS image to OpenNebula

This section assumed that you already have created a ConPaaS services image as explained in Creating A ConPaaS
Services VM Image. Upload your image (i.e. conpaas.img) to your OpenNebula headnode. The headnode is where
OpenNebula services are running. You need have a valid OpenNebula account on the headnode (i.e. onevm list
works!). Although you have a valid account on OpenNebula, you may have a problem similar to this:

/usr/lib/one/ruby/opennebula/client.rb:119:in ‘initialize’: ONE_AUTH file not present (RuntimeError)

You can fix it setting the ONE_AUT variable like follows:

$ export ONE_AUTH="/var/lib/one/.one/one_auth"

To register your image, you should execute register-image-opennebula.sh on the headnode. register-image-
opennebula.sh needs the path to conpaas.img as well as OpenNebula’s datastore ID and architecture Type.

To get the datastore ID, you should execute this command on the headnode:

$ onedatastore list

The output of register-image-opennebula.sh will be your ConPaaS OpenNebula image ID.

2.6. ConPaaS on OpenNebula 13

http://docs.aws.amazon.com/AWSSecurityCredentials/1.0/AboutAWSCredentials.html
http://docs.amazonwebservices.com/AWSEC2/latest/UserGuide/index.html?using-network-security.html
http://docs.amazonwebservices.com/AWSEC2/latest/UserGuide/index.html?using-network-security.html

ConPaaS Documentation, Release 1.4.2

2.6.2 Make sure OpenNebula is properly configured

OpenNebula’s OCCI daemon is used by ConPaaS to communicate with your OpenNebula cluster. The OCCI
daemon is included in OpenNebula only up to version 4.6 (inclusive), so later versions of OpenNebula are not
officially supported at the moment.

1. The OCCI server should be configured to listen on the correct interface so that it can receive connections
from the managers located on the VMs. This can be achieved by modifying the “host” IP (or FQDN -
fully qualified domain name) parameter from /etc/one/occi-server.conf and restarting the OCCI
server.

2. Ensure the OCCI server configuration file /etc/one/occi-server.conf contains the following lines
in section instance_types:

:custom:
:template: custom.erb

3. At the end of the OCCI profile file /etc/one/occi_templates/common.erb from your OpenNeb-
ula installation, append the following lines:

<% @vm_info.each(’OS’) do |os| %>
<% if os.attr(’TYPE’, ’arch’) %>
OS = [arch = "<%= os.attr(’TYPE’, ’arch’).split(’/’).last %>"]

<% end %>
<% end %>
GRAPHICS = [type="vnc",listen="0.0.0.0"]

These new lines adds a number of improvements from the standard version:

• The match for OS TYPE:arch allows the caller to specify the architecture of the machine.

• The last line allows for using VNC to connect to the VM. This is very useful for debugging purposes
and is not necessary once testing is complete.

4. Make sure you started OpenNebula’s OCCI daemon:

sudo occi-server start

Please note that, by default, OpenNebula’s OCCI server performs a reverse DNS lookup for each and every request
it handles. This can lead to very poor performances in case of lookup issues. It is recommended not to install
avahi-daemon on the host where your OCCI server is running. If it is installed, you can remove it as follows:

sudo apt-get remove avahi-daemon

If your OCCI server still performs badly after removing avahi-daemon, we suggest to disable reverse lookups
on your OCCI server by editing /usr/lib/ruby/$YOUR_RUBY_VERSION/webrick/config.rb and
replacing the line:

:DoNotReverseLookup => nil,

with:

:DoNotReverseLookup => true,

2.7 ConPaaS in a Nutshell

ConPaaS in a Nutshell is an extension to the ConPaaS project which aims at providing a cloud environent and
a ConPaaS installation running on it, all in a single VM, called the Nutshell. More specifically, this VM has an
all-in-one OpenStack installation running on top of LXC containers, as well as a ConPaaS installation, including
all of its components, already configured to work in this environment.

The Nutshell VM can be deployed on various virtual environments, not only standard clouds such as OpenNebula,
OpenStack and EC2 but also on simpler virtualization tools such as VirtualBox. Therefore, it provides a great
developing and testing environemnt for ConPaaS without the need of accessing a cloud.

14 Chapter 2. Installation

ConPaaS Documentation, Release 1.4.2

2.7.1 Creating a Nutshell image

The procedure for creating a Nutshell image is very similar to the one for creating a standard customized image de-
scribed in section Creating A ConPaaS Services VM Image. However, there are a few settings in the configuration
file which need to be considered.

Most importantly, there are two flags in the Nutshell section of the configuration file, nutshell and container which
control the kind of image that is going to be generated. Since these two flags can take either value true of false,
we distinguish four cases:

1. nutshell = false, container = false: In this case a standard ConPaaS VM image is generated and the nutshell
configurations are not taken into consideration. This is the default configuration which should be used when
ConPaaS is deployed on a standard cloud.

2. nutshell = false, container = true: In this case the user indicates that the image that will be generated will
be a LXC container image. This image is similar to a standard VM one, but it does not contain a kernel
installation.

3. nutshell = true, container = false. In this case a Nutshell image is generated and a standard ConPaaS VM
image will be embedded in it. This configuraiton should be used for deploying ConPaaS in nested standard
VMs within a single VM.

4. nutshell = true, container = true. Similar to the previous case, a Nutshell image is generated but this time
a container image is embedded in it instead of a VM one. Therefore, in order to generate a Nutshell based
on contaners make sure to set these flags to this configuration. This is the default configuraiton for our
distribution of nutshell.

Another important setting for generating the Nutshell image is also the path to a direcotry containing the ConPaaS
tarballs (cps*.tar.gz files). The rest of the settings specify the distro and kernel versions that the Nutshell VM
would have. For the moment we have tested it only for Ubuntu 12.04 with kernel 3.5.0.

In order to run the image generating script, the procedure is almost the same as for a standard image. From the
create_vm diretory run:

$ python create-img-script.py
$ sudo ./create-img-nutshell.sh

Note that if the nutshell flag is enabled the generated script file is called create-img-nutshell.sh. Otherwise, the
generated script file is called create-img-conpaas.sh as indicated previously.

2.7.2 Creating a Nutshell image for VirtualBox

As mentioned earlier the Nutshell VM can run on VirtualBox. In order to generate a Nutshell image compatible
with VirtualBox, you have to set the cloud value to vbox on the Customizable section of the configuration file.
The rest of the procedure is the same as for other clouds. The result of the image generation script would be a
nutshell.vdi image file which can be used as a virtual hard drive when creating a new appliance on VirtualBox.

The procedure for creating a new appliance on VirtualBox is quite standard:

1. Name and OS: You choose a custom name for the appliance but use Linux and Ubuntu (64 bit) for the type
and version.

2. Memory size: Since the nutshell runs a significat number of services and requires also some memory for
the containers we suggest to choose at least 3 GB of RAM.

3. Hard drive: Select “User an existing virtual hard drive file”, browse to the location of the nutshell.vdi file
generated earlier and press create.

2.7.3 Running the Nutshell in VirtualBox

From the 1.4.1 release though, ConPaaS is shipped together with a VirtualBox appliance containing the Nutshell
VM image as well.

2.7. ConPaaS in a Nutshell 15

ConPaaS Documentation, Release 1.4.2

Before running the appliance it is strongly suggested to create a host-only network on VirtualBox in case there
is not already one created. To do so from the VirtualBox GUI, go to: File>Preferences>Network>Host-only
Networks and click add. Then use the File>Import appliance menu to import the image in VirtualBox.

For more information regarding the usage of the Nutshell please consult the ConPaaS in a VirtualBox Nutshell
section in the guide.

16 Chapter 2. Installation

CHAPTER 3

User Guide

ConPaaS currently contains nine services:

• Two Web hosting services respectively specialized for hosting PHP and JSP applications;

• MySQL offering a multi-master replicated load-balanced database service;

• Scalarix service offering a scalable in-memory key-value store;

• MapReduce service providing the well-known high-performance computation framework;

• TaskFarming service high-performance batch processing;

• Selenium service for functional testing of web applications;

• XtreemFS service offering a distributed and replicated file system;

• HTC service providing a throughput-oriented scheduler for bags of tasks submitted on demand.

ConPaaS applications can be composed of any number of services. For example, a bio-informatics application
may make use of a PHP and a MySQL service to host a Web-based frontend, and link this frontend to a MapReduce
backend service for conducting high-performance genomic computations on demand.

3.1 Usage overview

3.1.1 Web-based interface

Most operations in ConPaaS can be done using the ConPaaS frontend, which gives a Web-based interface to
the system. The front-end allows users to register (directly with ConPaaS or through an external Identification
Provider at Contrail), create services, upload code and data to the services, and configure each service.

• The Dashboard page displays the list of services currently active in the system.

• Each service comes with a separate page which allows one to configure it, upload code and data, and scale
it up and down.

3.1.2 Command line interfaces

All the functionalities of the frontend are also available using a command-line interface. This allows one to script
commands for ConPaaS. The command-line interface also features additional advanced functionalities, which are
not available using the front-end. (The use of external Identification Provider at Contrail is not yet available from
the command-line interface.)

It exists two command line clients: cpsclient.py and cps-tools.

cpsclient.py Installation and configuration: see Installing and configuring cpsclient.py.

Command arguments:

17

ConPaaS Documentation, Release 1.4.2

cpsclient.py usage

Available service types:

cpsclient.py available

Service command specific arguments:

cpsclient.py usage <service_type>

Create a service:

cpsclient.py create <service_type>

List services:

cpsclient.py list

cps-tools

Installation and configuration: see Installing and configuring cps-tools.

Command arguments:

cps-tools --help

Available service types:

cps-tools service get_types
cps-service get-types

Service command specific arguments:

cps-tools <service_type> --help
cps-<service_type> --help

Create a service:

cps-tools service create <service_type>
cps-tools <service_type> create
cps-<service_type> create

List services:

cps-tools service list
cps-service list

List applications:

cps-tools application list
cps-application list

List clouds:

cps-tools cloud list
cps-cloud list

3.1.3 Controlling services using the front-end

The ConPaaS front-end provides a simple and intuitive interface for controlling services. We discuss here the
features that are common to all services, and refer to the next sections for service-specific functionality.

Create a service. Click on “create new service”, then select the service you want to create. This operation starts a
new “Manager” virtual machine instance. The manager is in charge of taking care of the service, but it does
not host applications itself. Other instances in charge of running the actual application are called “agent”
instances.

18 Chapter 3. User Guide

ConPaaS Documentation, Release 1.4.2

Start a service. Click on “start”, this will create a new virtual machine which can host applications, depending
on the type of service.

Rename the service. By default all new services are named “New service.” To give a meaningful name to a
service, click on this name in the service-specific page and enter a new name.

Check the list of virtual instances. A service can run using one or more virtual machine instances. The service-
specific page shows the list of instances, their respective IP addresses, and the role each instance is currently
having in the service. Certain services use a single role for all instances, while other services specialize
different instances to take different roles. For example, the PHP Web hosting service distinguishes three
roles: load balancers, web servers, and PHP servers.

Scale the service up and down. When a service is started it uses a single “agent” instance. To add more capacity,
or to later reduce capacity you can vary the number of instances used by the service. Click the numbers
below the list of instances to request adding or removing servers. The system reconfigures itself without
any service interruption.

Stop the service. When you do not need to run the application any more, click “stop” to stop the service. This
stops all instances except the manager which keeps on running.

Terminate the service. Click “terminate” to terminate the service. At this point all the state of the service man-
ager will be lost.

3.1.4 Controlling services using the command-line interfaces

Command-line interfaces allow one to control services without using the graphical interface. The command-line
interfaces also offer additional functionalities for advanced usage of the services. See Installing and configuring
cpsclient.py to install it.

List all options of the command-line tool.

$ cpsclient.py help

Create a service.

$ cpsclient.py create php

List available services.

$ cpsclient.py list

List service-specific options.

in this example the id of our service is 1
$ cpsclient.py usage 1

Scale the service up and down.

$ cpsclient.py usage 1
$ cpsclient.py add_nodes 1 1 1 0
$ cpsclient.py remove_nodes 1 1 1 0

3.1.5 The credit system

In Cloud computing, resources come at a cost. ConPaaS reflects this reality in the form of a credit system. Each
user is given a number of credits that she can use as she wishes. One credit corresponds to one hour of execution of
one virtual machine. The number of available credits is always mentioned in the top-right corner of the front-end.
Once credits are exhausted, your running instances will be stopped and you will not be able to use the system until
the administrator decides to give additional credit.

Note that every service consumes credit, even if it is in “stopped” state. The reason is that stopped services still
have one “manager” instance running. To stop using credits you must completely terminate your services.

3.1. Usage overview 19

ConPaaS Documentation, Release 1.4.2

3.2 Tutorial: hosting WordPress in ConPaaS

This short tutorial illustrates the way to use ConPaaS to install and host WordPress (http://www.wordpress.org), a
well-known third-party Web application. WordPress is implemented in PHP using a MySQL database so we will
need a PHP and a MySQL service in ConPaaS.

1. Open the ConPaaS front-end in your Web browser and log in. If necessary, create yourself a user account
and make sure that you have at least 5 credits. Your credits are always shown in the top-right corner of the
front-end. One credit corresponds to one hour of execution of one virtual machine instance.

2. Create a MySQL service, start it, reset its password. Copy the IP address of the master node somewhere,
we will need it in step 5.

3. Create a PHP service, start it.

4. Download a WordPress tarball from http://www.wordpress.org, and expand it in your computer.

5. Copy file wordpress/wp-config-sample.php to wordpress/wp-config.php and edit the
DB_NAME, DB_USER, DB_PASSWORD and DB_HOST variables to point to the database service. You can
choose any database name for the DB_NAME variable as long as it does not contain any special character.
We will reuse the same name in step 7.

6. Rebuild a tarball of the directory such that it will expand in the current directory rather than in a
wordpress subdirectory. Upload this tarball to the PHP service, and make the new version active.

7. Connect to the database using the command proposed by the frontend. Create a database of the same name
as in step 5 using command “CREATE DATABASE databasename;“

8. Open the page of the PHP service, and click “access application.” Your browser will dis-
play nothing because the application is not fully installed yet. Visit the same site at URL
http://xxx.yyy.zzz.ttt/wp-admin/install.php and fill in the requested information (site
name etc).

9. That’s it! The system works, and can be scaled up and down.

Note that, for this simple example, the “file upload” functionality of WordPress will not work if you scale the
system up. This is because WordPress stores files in the local file system of the PHP server where the upload
has been processed. If a subsequent request for this file is processed by another PHP server then the file will not
be found. The solution to that issue consists in using the shared file-system service called XtreemFS to store the
uploaded files.

3.3 The PHP Web hosting service

The PHP Web hosting service is dedicated to hosting Web applications written in PHP. It can also host static Web
content.

3.3.1 Uploading application code

PHP applications can be uploaded as an archive or via the Git version control system.

Archives can be either in the tar or zip format. Attention: the archive must expand in the current directory
rather than in a subdirectory. The service does not immediately use new applications when they are uploaded.
The frontend shows the list of versions that have been uploaded; choose one version and click “make active” to
activate it.

Note that the frontend only allows uploading archives smaller than a certain size. To upload large archives, you
must use the command-line tools or Git.

The following example illustrates how to upload an archive to the service with id 1 using the cpsclient.py
command line tool:

20 Chapter 3. User Guide

http://www.wordpress.org
http://www.wordpress.org

ConPaaS Documentation, Release 1.4.2

$ cpsclient.py upload_code 1 path/to/archive.zip

To enable Git-based code uploads you first need to upload your SSH public key. This can be done either using the
command line tool:

$ cpsclient.py upload_key serviceid filename

An SSH public key can also be uploaded using the ConPaaS frontend by choosing the “checking out repository”
option in the “Code management” section of your PHP service. Once the key is uploaded the frontend will show
the git command to be executed in order to obtain a copy of the repository. The repository itself can then be used
as usual. A new version of your application can be uploaded with git push.

user@host:~/code$ git add index.php
user@host:~/code$ git commit -am "New index.php version"
user@host:~/code$ git push origin master

3.3.2 Access the application

The frontend gives a link to the running application. This URL will remain valid as long as you do not stop the
service.

3.3.3 Using PHP sessions

PHP normally stores session state in its main memory. When scaling up the PHP service, this creates problems
because multiple PHP servers running in different VM instances cannot share their memory. To support PHP
sessions the PHP service features a key-value store where session states can be transparently stored. To overwrite
PHP session functions such that they make use of the shared key-value store, the PHP service includes a standard
“phpsession.php” file at the beginning of every .php file of your application that uses sessions, i.e. in which func-
tion session_start() is encountered. This file overwrites the session handlers using the session_set_save_handler()
function.

This modification is transparent to your application so no particular action is necessary to use PHP sessions in
ConPaaS.

3.3.4 Debug mode

By default the PHP service does not display anything in case PHP errors occur while executing the application.
This setting is useful for production, when you do not want to reveal internal information to external users. While
developing an application it is however useful to let PHP display errors.

$ cpsclient.py toggle_debug serviceid

3.3.5 Adding and removing nodes

Like all ConPaaS service, the PHP service is elastic: service owner can add or remove nodes. The PHP service
(like the Java service) belongs to a class of web services that deals with three types of nodes:

proxy a node that is used as an entry point for the web application and as a load balancer

web a node that deals with static pages only

backend a node that deals with PHP requests only

When a proxy node receives a request, it redirects it to a web node if it is a request for a static page, or a backend
node if it is a request for a PHP page.

If your PHP service has a slow response time, increase the number of backend nodes.

3.3. The PHP Web hosting service 21

ConPaaS Documentation, Release 1.4.2

On command line, you can use cpsclient.py to add nodes. The add_nodes sub-command takes 4 argu-
ments in that order: the PHP service identifier, the number of backend nodes, the number of web nodes and the
number of proxy nodes to add. It also take a 5th optional argument that specify in which cloud nodes will be
created. For example, adding two backend nodes to PHP service id 1:

cpsclient.py add_nodes 1 2 0 0

Adding one backend node and one web node in a cloud provider called mycloud:

cpsclient.py add_nodes 1 1 1 0 mycloud

You can also remove nodes using cpsclient.py. For example, the following command will remove one
backend node:

cpsclient.py remove_nodes 1 1 0 0

Warning: Initially, an instance of each node is running on one single VM. Then, when adding a backend
node, ConPaaS will move the backend node running on the first VM to a new VM. So, actually, it will not add
a new backend node the first time. Requesting for one more backend node will create a new VM that will run
an additional backend.

3.3.6 Autoscaling

One of the worries of a service owner, is the trade-off between the performance of the service, and the cost of
running it. The service owner can add nodes to improve the performance of the service which will have more
nodes to balance the load, or remove nodes from the service to decrease the cost per hour, but increase the load
per node.

Adding and removing nodes as described above is interactive: the service owner has to run a command line or push
some buttons on the web frontend GUI. However, the service owner is not always watching for the performance
of his Web service.

Autoscaling for the PHP service will add or remove nodes according to the load on the Web service. If the load on
nodes running a Web service exceeds a given threshold and the autoscaling mechanism estimates that it will last,
then the autoscaling mechanism will automatically add nodes for the service to balance the load. If the load on
nodes running a Web service is low and the autoscaling mechanism estimates that it will last and that removing
some nodes will not increase the load on nodes beyond the given threshold, then the autoscaling mechanism will
automatically remove nodes from the service to decrease the cost per hour of the service.

Autoscaling for the PHP service will also take into account the different kind of nodes that the cloud providers
propose. They usually propose small instances, middle range instances and large instances. So, the autoscaling
mechanism will select different kind of nodes depending on the service owner strategy choice.

To enable autoscaling for the PHP service, run the command:

cpsclient.py on_autoscaling <sid> <adapt_interval> <response_time_threshold> <strategy>

where:

• <sid> is the service identifier

• <adapt_interval> is the time in minutes between automatic adaptation point

• <response_time_threshold> is the desired response time in milliseconds

• <strategy> is the policy used to select instance type when adding nodes, it must be one of:

– “low”: will always select the smallest (and cheapest) instance proposed by the cloud provider

– “medium_down”

– “medium”

– “medium_up”

22 Chapter 3. User Guide

ConPaaS Documentation, Release 1.4.2

– “high”

For example:

cpsclient.py on_autoscaling 1 5 2000 low

enables autoscaling for PHP service 1, with an adaptation every 5 minutes, a response time threshold of 2000
milliseconds (2 seconds), and using the strategy low. This means that every 5 minutes, autoscaling will determine
if it will add nodes, remove nodes, or do nothing, by looking at the history of the Web service response time and
comparing it to the desired 2000 milliseconds. According the specified “low” strategy, if it decides to create nodes,
it will always select the smallest instance from the cloud provider.

Any time, the service owner may re-run the “on_autoscaling” command to tune autoscaling with different param-
eters:

cpsclient.py on_autoscaling 1 10 1500 low

this command updates the previous call to “on_autoscaling” and changes the adaptation interval to 10 minutes,
and setting a lower threshold to 15000 milliseconds.

Autoscaling may be disabled by running command:

cpsclient.py off_autoscaling <sid>

3.4 The Java Web hosting service

The Java Web hosting service is dedicated to hosting Web applications written in Java using JSP or servlets. It can
also host static Web content.

3.4.1 Uploading application code

Applications in the Java Web hosting service can be uploaded in the form of a war file or via the Git version
control system. The service does not immediately use new applications when they are uploaded. The frontend
shows the list of versions that have been uploaded; choose one version and click “make active” to activate it.

Note that the frontend only allows uploading archives smaller than a certain size. To upload large archives, you
must use the command-line tools or Git.

The following example illustrates how to upload an archive with the cpsclient.py command line tool:

$ cpsclient.py upload_code serviceid archivename

To upload new versions of your application via Git, please refer to section Uploading application code.

3.4.2 Access the application

The frontend gives a link to the running application. This URL will remain valid as long as you do not stop the
service.

3.5 The MySQL Database Service

The MySQL service is a true multi-master database cluster based on MySQL-5.5 and the Galera synchronous
replication system. It is an easy-to-use, high-availability solution, which provides high system uptime, no data
loss and scalability for future growth. It provides exactly the same look and feel as a regular MySQL database.

Summarizing, its advanced features are:

• Synchronous replication

3.4. The Java Web hosting service 23

ConPaaS Documentation, Release 1.4.2

• Active-active multi-master topology

• Read and write to any cluster node

• Automatic membership control, failed nodes drop from the cluster

• Automatic node joining

• True parallel replication, on row level

• Both read and write scalability

• Direct client connections, native MySQL look & feel

3.5.1 The Database Nodes and Load Balancer Nodes

The MySQL service offers the capability to instantiate multiple instances of database nodes, which can be used to
increase the througput and to improve features of fault tolerance throws replication. The multi-master structure al-
lows any database node to process incoming updates, because the replication system is responsible for propagating
the data modifications made by each member to the rest of the group and resolving any conflicts that might arise
between concurrent changes made by different members. These features can be used to increase the throughput
of the cluster.

To obtain the better performances from a cluster, it is a best practice to use it in balanced fashion, so that each
node has approximatively the same load of the others. To achieve this, the service allows users to allocate special
load balancer nodes (glb_nodes) which implement load balancing. Load balancer nodes are designed to receive
all incoming database queries and automatically schedule them between the database nodes, making sure they all
process equivalent workload.

3.5.2 Resetting the User Password

When a MySQL service is started, a new user “mysqldb” is created with a randomly-generated password. To
gain access to the database you must first reset this password. Click “Reset Password” in the front-end, and choose
the new password.

Note that the user password is not kept by the ConPaaS frontend. If you forget the password the only thing you
can do is reset the password again to a new value.

3.5.3 Accessing the database

The frontend provides the command-line to access the database cluster. Copy-paste this command in a terminal.
You will be asked for the user password, after which you can use the database as you wish. Note that, in case
the service has instantiate a load balancer the, command refers to the load balancer ip and its specifical port, so
the load balancer can receive all the queries and distributes them across the ordinary nodes. Note, again, that the
mysqldb user has extended privileges. It can create new databases, new users etc.

3.5.4 Uploading a Database Dump

The ConPaaS frontend allows users to easily upload database dumps to a MySQL service. Note that this func-
tionality is restricted to dumps of a relatively small size. To upload larger dumps you can always use the regular
mysql command for this:

$ mysql mysql-ip-address -u mysqldb -p < dumpfile.sql

24 Chapter 3. User Guide

ConPaaS Documentation, Release 1.4.2

3.5.5 Performance Monitoring

The MySQL service interface provides a sophisticated mechanism to monitor the service. The user interface, in the
frontend, shows a monitoring control, called “Performance Monitor,” that can be used to monitor a large cluster’s
behaviour. It interacts with “Ganglia”, “Galera” and “MySQL” to obtain various kinds of information. Thus,
Performance Monitor provides a solution for maintaining control and visibility of all nodes, with a monitoring
dynamic data every few seconds.

It consists of three main components.

• “Cluster usage” monitors the number of incoming SQL queries. This will let you know in advance about
any overload of the resources. You will also be able to spot usage trends over time so as to get insights on
when you need to add new nodes, serving the MySQL database.

• The second control highlights the cluster’s performance, with a table detailing the load, memory usage,
CPU utilization, and network traffic for each node of the cluster. Users can use these informations in order
to detect problems in their applications. The table displays the resource utilization across all nodes, and
highlight the parameters which suggest an abnormality. For example if CPU utilization is high, or free
memory is very low this is shown clearly. This may mean that processes on this node will start to slow
down, and that it may be time to add additional nodes to the cluster. On the other hand this may indicate a
malfunction on the specific node.

In this last case, in a multimaster system, it may be a good idea to kill the node and replace it with another
one. The monitoring system simplifys also this kind of operations through buttons which allows to directly
kill a specific node. Keep in mind, however, that high CPU utilization may not necessarily affect application
performance.

• “Galera Mean Misalignment” draws a realtime measure of the mean misalignment accross the nodes. This
information is derived by Galera metrics about the average length of the receive queue since the most recent
status query. If this value is noticeably larger than zero, the nodes are likely to be overloaded, and cannot
apply the writesets as quickly as they arrive, resulting in replication throttling.

3.6 The Scalarix key-value store service

The Scalarix service provides an in-memory key-value store. It is highly scalable and fault-tolerant. This service
deviates slightly from the organization of other services in that it does not have a separate manager virtual machine
instance. Scalarix is fully symmetric so any Scalarix node can act as a service manager.

3.6.1 Accessing the key-value store

Clients of the Scalarix service need the IP address of (at least) one node to connect to the service. Copy-paste the
address of any of the running instances in the client. A good choice is the first instance in the list: when scaling the
service up and down, other instances may be created or removed. The first instance will however remain across
these reconfigurations, until the service is terminated.

3.6.2 Managing the key-value store

Scalarix provides its own Web-based interface to monitor the state and performance of the key-value store, man-
ually add or query key-value pairs, etc. For convenience reasons the ConPaaS front-end provides a link to this
interface.

3.7 The MapReduce service

The MapReduce service provides the well-known Apache Hadoop framework in ConPaaS. Once the MapReduce
service is created and started, the front-end provides useful links to the Hadoop namenode, the job tracker, and to
a graphical interface which allows to upload/download data to/from the service and issue MapReduce jobs.

3.6. The Scalarix key-value store service 25

ConPaaS Documentation, Release 1.4.2

IMPORTANT: This service requires virtual machines with at least 384 MB of RAM to function properly.

3.8 The TaskFarming service

The TaskFarming service provides a bag of tasks scheduler for ConPaaS. The user needs to provide a list of
independent tasks to be executed on the cloud and a file system location where the tasks can read input data and/or
write output data to it. The service first enters a sampling phase, where its agents sample the runtime of the given
tasks on different cloud instances. The service then based on the sampled runtimes, provides the user with a list
of schedules. Schedules are presented in a graph and the user can choose between cost/makespan of different
schedules for the given set of tasks.fter the choice is made the service enters the execution phase and completes
the execution of the rest of the tasks according to the user’s choice.

3.8.1 Preparing the ConPaaS services image

By default, the TaskFarming service can execute the user code that is supported by the default ConPaaS services
image. If user’s tasks depend on specific libraries and/or applications that do not ship with the default ConPaaS
services image, the user needs to configure the ConPaaS services image accordingly and use the customized image
ID in ConPaaS configuration files.

3.8.2 The bag of tasks file

The bag of tasks file is a simple plain text file that contains the list of tasks along with their arguments to be
executed. The tasks are separated by new lines. This file needs to be uploaded to the service, before the service
can start sampling. Below is an example of a simple bag of tasks file containing three tasks:

/bin/sleep 1 && echo "slept for 1 seconds" >> /mnt/xtreemfs/log
/bin/sleep 2 && echo "slept for 2 seconds" >> /mnt/xtreemfs/log
/bin/sleep 3 && echo "slept for 3 seconds" >> /mnt/xtreemfs/log

The minimum number of tasks required by the service to start sampling is depending on the number of tasks itself,
but a bag with more than thirty tasks is large enough.

3.8.3 The filesystem location

The TaskFarming service uses XtreemFS for data input/output. The actual task code can also reside in the
XtreemFS. The user can optionally provide an XtreemFS location which is then mounted on TaskFarming agents.

3.8.4 The demo mode

With large bags of tasks and/or with long running tasks, the TaskFarming service can take a long time to execute
the given bag. The service provides its users with a progress bar and reports the amount of money spent so far. The
TaskFarming service also provides a “demo” mode where the users can try the service with custom bags without
spending time and money.

3.9 The XtreemFS service

The XtreemFS service provides POSIX compatible storage for ConPaaS. Users can create volumes that can be
mounted remotely or used by other ConPaaS services, or inside applications. An XtreemFS instance consists of
multiple DIR, MRC and OSD servers. The OSDs contain the actual storage, while the DIR is a directory service
and the MRC contains meta data. By default, one instance of each runs inside the first agent virtual machine and the
service can be scaled up and down by adding and removing additional OSD nodes. The XtreemFS documentation
can be found at http://xtreemfs.org/userguide.php.

26 Chapter 3. User Guide

http://xtreemfs.org/userguide.php

ConPaaS Documentation, Release 1.4.2

3.9.1 SSL Certificates

The XtreemFS service uses SSL certificates for authorisation and authentication. There are two types of certifi-
cates, user-certificates and client-certificates. Both certificates can additionally be flagged as administrator certifi-
cates which allows performing administrative file-systems tasks when using them to access XtreemFS. Certificates
are only valid for the service that was used to create them. The generated certificates are in P12-format.

The difference between client- and user-certificates is how POSIX users and groups are handled when accessing
volumes and their content. Client-certificates take the user and group with whom an XtreemFS command is called,
or a mounted XtreemFS volume is accessed. So multiple users might share a single client-certificate. On the other
hand, user-certificates contain a user and group inside the certificate. So usually, each user has her personal user-
certificate. Both kinds of certificate can be used in parallel. Client-certificates are less secure, since the user and
group with whom files are accessed can be arbitrarly changed if the mounting user has local superuser rights. So
client-certificates should only be used in trusted environments.

Using the command line client, certificates can be created like this, where <adminflag> can be “true”, “yes”, or
“1” to grant administrator rights:

cpsclient.py get_client_cert <service-id> <passphrase> <adminflag> <filename.p12>
cpsclient.py get_user_cert <service-id> <user> <group> <passphrase> <adminflag> <filename.p12>

3.9.2 Accessing volumes directly

Once a volume has been created, it can be directly mounted on a remote site by using the mount.xtreemfs com-
mand. A mounted volume can be used like any local POSIX-compatible filesystem. You need a certificate for
mounting (see last section). The command looks like this, where <address> is the IP of an agent running an
XtreemFS directory service (usually the first agent):

mount.xtreemfs <address>/<volume> <mount-point> --pkcs12-file-path <filename.p12> --pkcs12-passphrase <passphrase>

The volume can be unmounted with the following command:

fusermount -u <mount-point>

Please refer to the XtreemFS user guide (http://xtreemfs.org/userguide.php) for further details.

3.9.3 Policies

Different aspects of XtreemFS (e.g. replica- and OSD-selection) can be customised by setting certain policies.
Those policies can be set via the ConPaaS command line client (recommended) or directly via xtfsutil (see the
XtreemFS user guide). The commands are like follows, were <policy_type> is “osd_sel”, “replica_sel”, or “repli-
cation”:

cpsclient.py list_policies <service-id> <policy_type>
cpsclient.py set_policy <service-id> <policy_type> <volume> <policy> [factor]

3.9.4 Persistency

If the XtreemFS service is shut down, all its data is permanently lost. If persistency beyond the service runtime
is needed, the XtreemFS service can be moved into a snapshot by using the download_manifest operation of the
command line client. WARNING: This operation will automatically shut down the service and its application.
The whole application containing the service and all of its stored volumes with their data can be moved back into
a running ConPaaS application by using the manifest operation.

The commands are:

cpsclient.py download_manifest <application-id> > <filename>
cpsclient.py manifest <filename>

3.9. The XtreemFS service 27

http://xtreemfs.org/userguide.php

ConPaaS Documentation, Release 1.4.2

3.9.5 Important notes

When a service is scaled down by removing OSDs, the data of those OSDs is migrated to the remaining OSDs.
Always make sure there is enough free space for this operation to succeed. Otherwise you risk data loss. The
download_manifest operation of the XtreemFS service will also shut the service down. This behaviour might
differ from other ConPaaS services, but is necessary to avoid copying the whole filesystem (which would be a
very expensive operation). This might change in future releases.

3.10 The HTC service

The HTC service provides a throughput-oriented scheduler for bags of tasks submitted on demand for ConPaaS.
An initial bag of tasks is sampled generating a throughput = f(cost) function. The user is allowed at any point,
including upon new tasks submission, to request the latest throughput = f(cost) function and insert his target
throughput. After the first bag is sampled and submitted for execution the user is allowed to add tasks to the
job with the corresponding identifier. The user is allowed at any point, including upon new tasks submission,
to request the latest throughput = f(cost) function and adjust his target throughput. All tasks that are added are
immediately submitted for execution using the latest configuration requested by the user, corresponding to the
target throughput.

3.10.1 Available commands

start service_id - prompts the user to specify a mode (’real’ or ’demo’) and type (’batch’, ’online’ or ’workflow’)
for the service. Starts the service under the selected context and initializes all the internal data structures for
running the service.

stop service_id: stops and releases all running VMs that exist in the pool of workers regardless of the tasks
running.

terminate service_id: stops and releases the manager VM along with the running algorithm and existing
data structures.

create_worker service_id type count: adds count workers to the pool returns the worker_ids. The
worker is added to the table. The manager starts the worker on a VM requested of the selected type.

remove_worker service_id worker_id: removes a worker from the condor pool. The worker_id is
removed from the table.

create_job service_id .bot_file: creates a new job on the manager and returns a job_id. It uploads
the .bot_file on the manager and assign a queue to the job which will contain the path of all .bot_files submitted
to this job_id.

sample service_id job_id: samples the job on all available machine types in the cloud according to the
HTC model.

throughput service_id: prompts the user to select a target throughput within [0,TMAX] and returns the
cost for that throughput.

configuration service_id: prompts the user to select a target throughput within [0,TMAX] and returns
the machine configuration required for that throughput. At this point the user can manually create the pool of
workers using create_worker and remove_worker.

select service_id: prompts the user to select a target throughput within [0,TMAX] and creates the pool of
workers needed to obtain that throughput.

submit service_id job_id: submits all the bags in this job_id for execution with the current configura-
tion of workers.

add service_id job_id .bot_file: submits a .bot_file for execution on demand. The bag is executed
with the existing configuration.

28 Chapter 3. User Guide

ConPaaS Documentation, Release 1.4.2

3.11 ConPaaS in a VirtualBox Nutshell

After the host-only network has been set up and the tarball has been extracted, you can import the appliance on
VirtualBox by double clicking on it. In case you genereated a custom appliance, it is already imported so you can
start it.

The login credentials are:

Username: stack
Password: contrail

In order to have a more interactive inteface we suggest to connect to it through ssh from the host machine. Depend-
ing on how your host-only network is configured the IP might be different. However, for a default configuration
the IP is in the range 192.168.56.101/32.

The credentials for the Opensack and ConPaaS users are:

Openstack
Username: admin
Password: password

ConPaaS
Username: test
Password: password

However, on login, both the users are authenticated and you are able to execute Openstack command such as:

nova list

In case an empty table is shown, everything is ready and ConPaaS components can be used. A simple test would
be to start a helloworld service by running:

cpsclient.py create helloworld

In addition to the ConPaaS CLI, the Nutshell contains also the ConPaaS front-end isntallation. You can reach the
front-end from the host machine by going to:

https://192.168.56.xxx

Note that also Horizon (the Openstack dashboard) is running on it as well. Horizon can be reached at:

http://192.168.56.xxx

The Nutshell contains a Devstack installation of Openstack, therefore different services run and log on different
tabs of a screen session. In order to stop, start or consult the logs of these services, connect to the screen session
by executing:

/opt/stack/devstack/rejoin-stack.sh

Every tab in the screen session is labeled with the name of the service it belongs to. For more information on how
to navigate between tabs and scroll up and down the logs, please consult the manual page for the screen command.

3.11. ConPaaS in a VirtualBox Nutshell 29

ConPaaS Documentation, Release 1.4.2

30 Chapter 3. User Guide

CHAPTER 4

Internals

4.1 Introduction

A ConPaaS service may consist of three main entities: the manager, the agent and the frontend. The (primary)
manager resides in the first VM that is started by the frontend when the service is created and its role is to manage
the service by providing supporting agents, maintaining a stable configuration at any time and by permanently
monitoring the service’s performance. An agent resides on each of the other VMs that are started by the manager.
The agent is the one that does all the work. Note that a service may contain one manager and multiple agents, or
multiple managers that also act as agents.

To implement a new ConPaaS service, you must provide a new manager service, a new agent service and a new
frontend service (we assume that each ConPaaS service can be mapped on the three entities architecture). To ease
the process of adding a new ConPaaS service, we propose a framework which implements common functionality
of the ConPaaS services. So far, the framework provides abstraction for the IaaS layer (adding support for a
new cloud provider should not require modifications in any ConPaaS service implementation) and it also provides
abstraction for the HTTP communication (we assume that HTTP is the preferred protocol for the communication
between the three entities).

4.1.1 ConPaaS directory structure

You can see below the directory structure of the ConPaaS software. The core folder under src contains the ConPaaS
framework. Any service should make use of this code. It contains the manager http server, which instantiates the
python manager class that implements the required service; the agent http server that instantiates the python agent
class (if the service requires agents); the IaaS abstractions and other useful code.

A new service should be added in a new python module under the ConPaaS/src/conpaas/services folder:

ConPaaS/ (conpaas/conpaas-services/)
|-- src
| |-- conpaas
| | |-- core
| | | |-- clouds
| | | | |-- base.py
| | | | |-- dummy.py
| | | | |-- ec2.py
| | | | |-- federation.py
| | | | |-- opennebula.py
| | | | |-- openstack.py
| | | |-- agent.py
| | | |-- controller.py
| | | |-- expose.py
| | | |-- file.py
| | | |-- ganglia.py
| | | |-- git.py
| | | |-- https

31

ConPaaS Documentation, Release 1.4.2

| | | |-- iaas.py
| | | |-- ipop.py
| | | |-- log.py
| | | |-- manager.py
| | | |-- manager.py.generic_add_nodes
| | | |-- misc.py
| | | |-- node.py
| | | |-- services.py
| | |-- services
| | |-- cds/
| | |-- galera/
| | |-- helloworld/
| | |-- htc/
| | |-- htcondor/
| | |-- mapreduce/
| | |-- scalaris/
| | |-- selenium/
| | |-- taskfarm/
| | |-- webservers/
| | |-- xtreemfs/
| |-- dist
| |-- libcloud -> ../contrib/libcloud/
| |-- setup.py
| |-- tests
| |-- core
| |-- run_tests.py
| |-- services
| |-- unit-tests.sh
|-- config
|-- contrib
|-- misc
|-- sbin
|-- scripts

In the next paragraphs we describe how to add the new ConPaaS service.

4.2 Service Organization

4.2.1 Service’s name

The first step in adding a new ConPaaS service is to choose a name for it. This name will be used to construct,
in a standardized manner, the file names of the scripts required by this service (see below). Therefore, the names
should not contain spaces, nor unaccepted characters.

4.2.2 Scripts

To function properly, ConPaaS uses a series of configuration files and scripts. Some of them must be modified by
the administrator, i.e. the ones concerning the cloud infrastructure, and the others are used, ideally unchanged, by
the manager and/or the agent. A newly added service would ideally function with the default scripts. If, however,
the default scripts are not satisfactory (for example the new service would need to start something on the VM, like
a memcache server) then the developers must supply a new script/config file, that would be used instead of the
default one. This new script’s name must be preceded by the service’s chosen name (as described above) and will
be selected by the frontend at run time to generate the contextualization file for the manager VM. (If the frontend
doesn’t find such a script/config file for a given service, then it will use the default script). Note that some scripts
provided for a service do not replace the default ones, instead they will be concatenated to them (see below
the agent and manager configuration scripts).

32 Chapter 4. Internals

ConPaaS Documentation, Release 1.4.2

Below we give an explanation of the scripts and configuration files used by a ConPaaS service (there are other
configuration files used by the frontend but these are not relevant to the ConPaaS service). Basically there are
two scripts that a service uses to boot itself up - the manager contextualization script, which is executed after the
manager VM booted, and the agent contextualization script, which is executed after the agent VM booted. These
scripts are composed of several parts, some of which are customizable to the needs of the new service.

In the ConPaaS home folder (CONPAAS_HOME) there is the config folder that contains configuration files in
the INI format and the scripts folder that contains executable bash scripts. Some of these files are specific to the
cloud, other to the manager and the rest to the agent. These files will be concatenated in a single contextualization
script, as described below.

• Files specific to the Cloud:

(1) CONPAAS_HOME/config/cloud/cloud_name.cfg, where cloud_name refers to the clouds supported by
the system (for now OpenNebula and EC2). So there is one such file for each cloud the system supports.
These files are filled in by the administrator. They contain information such as the username and password
to access the cloud, the OS image to be used with the VMs, etc. These files are used by the frontend and the
manager, as both need to ask the cloud to start VMs.

(2) CONPAAS_HOME/scripts/cloud/cloud_name, where cloud_name refers to the clouds supported by the
system (for now OpenNebula and EC2). So, as above, there is one such file for each cloud the system
supports. These scripts will be included in the contextualization files. For example, for OpenNebula, this
file sets up the network.

• Files specific to the Manager:

(3) CONPAAS_HOME/scripts/manager/manager-setup, which prepares the environment by copying the
ConPaaS source code on the VM, unpacking it, and setting up the PYTHONPATH environment variable.

(4) CONPAAS_HOME/config/manager/service_name-manager.cfg, which contains configuration variables
specific to the service manager (in INI format). If the new service needs any other variables (like a path to
a file in the source code), it should provide an annex to the default manager config file. This annex must be
named service_name-manager.cfg and will be concatenated to default-manager.cfg

(5) CONPAAS_HOME/scripts/manager/service_name-manager-start, which starts the server manager and
any other programs the service manager might use.

(6) CONPAAS_HOME/sbin/manager/service_name-cpsmanager (will be started by the service_name-
manager-start script), which starts the manager server, which in turn will start the requested manager service.

Scripts (1), (2), (3), (4) and (5) will be used by the frontend to generate the contextualization script for the
manager VM. After this scripts executes, a configuration file containing the concatenation of (1) and (4)
will be put in ROOT_DIR/config.cfg and then (6) is started with the config.cfg file as a parameter that will
be forwarded to the new service.

Examples:

Listing 1: Script (1) ConPaaS/config/cloud/opennebula.cfg

[iaas]
DRIVER = OPENNEBULA

The URL of the OCCI interface at OpenNebula. Note: ConPaaS currently
supports only the default OCCI implementation that comes together
with OpenNebula. It does not yet support the full OCCI-0.2 and later
versions.
URL =

TODO: Currently, the TaskFarming service uses XMLRPC to talk to Opennebula.
This is the url to the server (Ex. http://dns.name.or.ip:2633/RPC2)
XMLRPC =

Your OpenNebula user name
USER =

Your OpenNebula password

4.2. Service Organization 33

ConPaaS Documentation, Release 1.4.2

PASSWORD =

The image ID (an integer). You can list the registered OpenNebula
images with command "oneimage list" command.
IMAGE_ID =

OCCI defines 4 standard instance types: small medium large and custom. This
variable should choose one of these. (The small, medium and large instances have
predefined memory size and cpu, but the custom one permits the customization of
these parameters. The best option is to use the custom variable as some services,
like map-reduce and mysql, must be able to start VMs with a given quantity of memory)
INST_TYPE = custom

The network ID (an integer). You can list the registered OpenNebula
networks with the "onevnet list" command.
NET_ID =

The network gateway through which new VMs can route their traffic in
OpenNebula (an IP address)
NET_GATEWAY =

The DNS server that VMs should use to resolve DNS names (an IP address)
NET_NAMESERVER =

The OS architecture of the virtual machines.
(corresponds to the OpenNebula "ARCH" parameter from the VM template)
OS_ARCH =

The device that will be mounted as root on the VM. Most often it
is "sda" or "hda" for KVM, and "xvda2" for Xen.
(corresponds to the OpenNebula "ROOT" parameter from the VM template)
OS_ROOT =

The device on which the VM image disk is mapped.
DISK_TARGET =

The device associated with the CD-ROM on the virtual machine. This
will be used for contextualization in OpenNebula. Most often it is
"sr0" for KVM and "xvdb" for Xen.
(corresponds to the OpenNebula "TARGET" parameter from the "CONTEXT"
section of the VM template)
CONTEXT_TARGET =

##
The following values are only needed by the Task Farming service
##

PORT =

A unique name used in the service to specify different clouds
HOSTNAME =

The accountable time unit. Different clouds charge at different
frequencies (e.g. Amazon charges per hour = 60 minutes)
TIMEUNIT =

The price per TIMEUNIT of this specific machine type on this cloud
COSTUNIT =

The maximum number of VMs that the system is allowed to allocate from this
cloud
MAXNODES =
SPEEDFACTOR =

34 Chapter 4. Internals

ConPaaS Documentation, Release 1.4.2

Listing 2: Script (2) ConPaaS/scripts/cloud/opennebula

#!/bin/bash

if [-f /mnt/context.sh]; then
. /mnt/context.sh

fi

/sbin/ifconfig eth0 $IP_PUBLIC netmask $NETMASK
/sbin/ip route add default via $IP_GATEWAY
echo "nameserver $NAMESERVER" > /etc/resolv.conf
echo "prepend domain-name-servers $NAMESERVER;" >> /etc/dhcp/dhclient.conf

HOSTNAME=‘/usr/bin/host $IP_PUBLIC | cut -d’ ’ -f5 | cut -d’.’ -f1‘
/bin/hostname $HOSTNAME

##
Create the one_auth file from contextualization variable ONE_AUTH_CONTENT
and set it as an environment variable for the JVM
This is needed for services that use XMLRPC instead of OCCI

if [$ONE_AUTH_CONTENT]; then
export ONE_AUTH=/root/.one_auth
export ONE_XMLRPC
echo $ONE_AUTH_CONTENT > $ONE_AUTH

fi

PCI Hotplug Support is needed in order to attach persistent storage volumes
to this instance
/sbin/modprobe acpiphp
/sbin/modprobe pci_hotplug

Listing 3: Script (3) ConPaaS/scripts/manager/manager-setup

#!/bin/bash

Ths script is part of the contextualization file. It
copies the source code on the VM, unpacks it, and sets
the PYTHONPATH environment variable.

Is filled in by the director
DIRECTOR=%DIRECTOR_URL%
SOURCE=$DIRECTOR/download
ROOT_DIR=/root
CPS_HOME=$ROOT_DIR/ConPaaS

LOG_FILE=/var/log/cpsmanager.log
ETC=/etc/cpsmanager
CERT_DIR=$ETC/certs
VAR_TMP=/var/tmp/cpsmanager
VAR_CACHE=/var/cache/cpsmanager
VAR_RUN=/var/run/cpsmanager

mkdir $CERT_DIR
mv /tmp/*.pem $CERT_DIR

wget --ca-certificate=$CERT_DIR/ca_cert.pem -P $ROOT_DIR/ $SOURCE/ConPaaS.tar.gz
tar -zxf $ROOT_DIR/ConPaaS.tar.gz -C $ROOT_DIR/
export PYTHONPATH=$CPS_HOME/src/:$CPS_HOME/contrib/

Listing 4: Script (4) ConPaaS/config/manager/default-manager.cfg

[manager]

4.2. Service Organization 35

ConPaaS Documentation, Release 1.4.2

Service TYPE will be filled in by the director
TYPE = %CONPAAS_SERVICE_TYPE%

BOOTSTRAP = $SOURCE
MY_IP = $IP_PUBLIC

These are used by the manager to
communicate with the director to:
- decrement the number of credits the user has.
(they are used when a VM ran more than 1 hour)
- request a new certificate from the CA
Everything will be filled in by the director
DEPLOYMENT_NAME = %CONPAAS_DEPLOYMENT_NAME%
SERVICE_ID = %CONPAAS_SERVICE_ID%
USER_ID = %CONPAAS_USER_ID%
APP_ID = %CONPAAS_APP_ID%
CREDIT_URL = %DIRECTOR_URL%/callback/decrementUserCredit.php
TERMINATE_URL = %DIRECTOR_URL%/callback/terminateService.php
CA_URL = %DIRECTOR_URL%/ca/get_cert.php

IPOP_BASE_NAMESPACE = %DIRECTOR_URL%/ca/get_cert.php
The following IPOP directives are added by the director if necessary
IPOP_BASE_IP = %IPOP_BASE_IP%
IPOP_NETMASK = %IPOP_NETMASK%
IPOP_IP_ADDRESS = %IPOP_IP_ADDRESS%
IPOP_SUBNET = %IPOP_SUBNET%

This directory structure already exists in the VM (with ROOT = ’’) - see
the ’create new VM script’ so do not change ROOT unless you also modify
it in the VM. Use these files/directories to put variable data that
your manager might generate during its life cycle
LOG_FILE = $LOG_FILE
ETC = $ETC
CERT_DIR = $CERT_DIR
VAR_TMP = $VAR_TMP
VAR_CACHE = $VAR_CACHE
VAR_RUN = $VAR_RUN
CODE_REPO = %(VAR_CACHE)s/code_repo

CONPAAS_HOME = $CPS_HOME

The default block device where the disks are attached to.
DEV_TARGET = sdb

Add below other config params your manager might need and save a file as
%service_name%-manager.cfg
Otherwise this file will be used by default

Listing 5: Script (5) ConPaaS/scripts/manager/default-manager-start

#!/bin/bash

This script is part of the contextualization file. It
starts a python script that parses the given arguments
and starts the manager server, which in turn will start
the manager service.

This file is the default manager-start file. It can be
customized as needed by the sevice.

$CPS_HOME/sbin/manager/default-cpsmanager -c $ROOT_DIR/config.cfg 1>$ROOT_DIR/manager.out 2>$ROOT_DIR/manager.err &
manager_pid=$!
echo $manager_pid > $ROOT_DIR/manager.pid

36 Chapter 4. Internals

ConPaaS Documentation, Release 1.4.2

Listing 6: Script (6) ConPaaS/sbin/manager/default-cpsmanager

#!/usr/bin/python
’’’
Copyright (c) 2010-2012, Contrail consortium.
All rights reserved.

Redistribution and use in source and binary forms,
with or without modification, are permitted provided
that the following conditions are met:

1. Redistributions of source code must retain the
above copyright notice, this list of conditions
and the following disclaimer.

2. Redistributions in binary form must reproduce
the above copyright notice, this list of
conditions and the following disclaimer in the
documentation and/or other materials provided
with the distribution.

3. Neither the name of the Contrail consortium nor the
names of its contributors may be used to endorse
or promote products derived from this software
without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

Created on Jul 4, 2011

@author: ielhelw
’’’
from os.path import exists
from conpaas.core.https import client, server

if __name__ == ’__main__’:
from optparse import OptionParser
from ConfigParser import ConfigParser
import sys

parser = OptionParser()
parser.add_option(’-p’, ’--port’, type=’int’, default=443, dest=’port’)
parser.add_option(’-b’, ’--bind’, type=’string’, default=’0.0.0.0’, dest=’address’)
parser.add_option(’-c’, ’--config’, type=’string’, default=None, dest=’config’)
options, args = parser.parse_args()

if not options.config or not exists(options.config):
print >>sys.stderr, ’Failed to find configuration file’
sys.exit(1)

config_parser = ConfigParser()

4.2. Service Organization 37

ConPaaS Documentation, Release 1.4.2

try:
config_parser.read(options.config)

except:
print >>sys.stderr, ’Failed to read configuration file’
sys.exit(1)

"""
Verify some sections and variables that must exist in the configuration file
"""
config_vars = {
’manager’: [’TYPE’, ’BOOTSTRAP’, ’LOG_FILE’,

’CREDIT_URL’, ’TERMINATE_URL’, ’SERVICE_ID’],
’iaas’: [’DRIVER’],

}
config_ok = True
for section in config_vars:
if not config_parser.has_section(section):
print >>sys.stderr, ’Missing configuration section "%s"’ % (section)
print >>sys.stderr, ’Section "%s" should contain variables %s’ % (section, str(config_vars[section]))
config_ok = False
continue

for field in config_vars[section]:
if not config_parser.has_option(section, field)\
or config_parser.get(section, field) == ’’:

print >>sys.stderr, ’Missing configuration variable "%s" in section "%s"’ % (field, section)
config_ok = False

if not config_ok:
sys.exit(1)

Initialize the context for the client
client.conpaas_init_ssl_ctx(config_parser.get(’manager’, ’CERT_DIR’),

’manager’, config_parser.get(’manager’, ’USER_ID’),
config_parser.get(’manager’, ’SERVICE_ID’))

Start the manager server
print options.address, options.port
d = server.ConpaasSecureServer((options.address, options.port),

config_parser,
’manager’,
reset_config=True)

d.serve_forever()

• Files specific to the Agent

They are similar to the files described above for the manager, but this time the contextualization file is
generated by the manager.

4.2.3 Scripts and config files directory structure

Below you can find the directory structure of the scripts and configuration files described above.

ConPaaS/ (conpaas/conpaas-services/)
|-- config
| |-- agent
| | |-- default-agent.cfg
| | |-- galera-agent.cfg
| | |-- helloworld-agent.cfg
| | |-- htc-agent.cfg
| | |-- htcondor.cfg
| | |-- mapreduce-agent.cfg
| | |-- scalaris-agent.cfg
| | |-- web-agent.cfg

38 Chapter 4. Internals

ConPaaS Documentation, Release 1.4.2

| | |-- xtreemfs-agent.cfg
| |-- cloud
| | |-- clouds-template.cfg
| | |-- ec2.cfg
| | |-- ec2.cfg.example
| | |-- opennebula.cfg
| | |-- opennebula.cfg.example
| |-- ganglia
| | |-- ganglia_frontend.tmpl
| | |-- ganglia-gmetad.tmpl
| | |-- ganglia-gmond.tmpl
| |-- ipop
| | |-- bootstrap.config.tmpl
| | |-- dhcp.config.tmpl
| | |-- ipop.config.tmpl
| | |-- ipop.vpn.config.tmpl
| | |-- node.config.tmpl
| |-- manager
| |-- default-manager.cfg
| |-- htc-manager.cfg
| |-- htcondor.cfg
| |-- java-manager.cfg
| |-- php-manager.cfg
|-- sbin
| |-- agent
| | |-- default-cpsagent
| | |-- web-cpsagent
| |-- manager
| |-- default-cpsmanager
| |-- php-cpsmanager
| |-- taskfarm-cpsmanager
|-- scripts

|-- agent
| |-- agent-setup
| |-- default-agent-start
| |-- htc-agent-start
| |-- htcondor-agent-start
| |-- mapreduce-agent-start
| |-- scalaris-agent-start
| |-- selenium-agent-start
| |-- taskfarm-agent-start
| |-- web-agent-start
| |-- xtreemfs-agent-start
|-- cloud
| |-- dummy
| |-- ec2
| |-- federation
| |-- opennebula
| |-- openstack
|-- create_vm
| |-- 40_custom
| |-- create-img-conpaas.sh
| |-- create-img-script.cfg
| |-- create-img-script.py
| |-- README
| |-- register-image-ec2-ebs.sh
| |-- register-image-ec2-s3.sh
| |-- register-image-opennebula.sh
| |-- scripts
| |-- 000-head
| |-- 003-create-image
| |-- 004-conpaas-core
| |-- 501-php

4.2. Service Organization 39

ConPaaS Documentation, Release 1.4.2

| |-- 502-galera
| |-- 503-condor
| |-- 504-selenium
| |-- 505-hadoop
| |-- 506-scalaris
| |-- 507-xtreemfs
| |-- 508-cds
| |-- 995-rm-unused-pkgs
| |-- 996-user
| |-- 997-tail
| |-- 998-ec2
| |-- 998-opennebula
| |-- 999-resize-image
|-- manager

|-- cds-manager-start
|-- default-git-deploy-hook
|-- default-manager-start
|-- htc-manager-start
|-- htcondor-manager-start
|-- java-manager-start
|-- manager-setup
|-- notify_git_push.py
|-- php-manager-start
|-- taskfarm-manager-start

4.3 Implementing a new ConPaaS service using blueprints

Blueprints are service templates you can use to speed up the creation of a new service. You can use this blueprint-
ing mechanism with create-new-service-from-blueprints.sh.

The conpaas-blueprints tree contains the following files:

conpaas-blueprints
|-- conpaas-client
| |-- cps
| |-- blueprint.py
|-- conpaas-frontend
| |-- www
| |-- images
| | |-- blueprint.png
| |-- js
| | |-- blueprint.js
| |-- lib
| |-- service
| | |-- blueprint
| | |-- __init__.php
| |-- ui
| |-- instance
| | |-- blueprint
| | |-- __init__.php
| |-- page
| |-- blueprint
| |-- __init__.php
|-- conpaas-services

|-- scripts
| |-- create_vm
| |-- scripts
| |-- 5xx-blueprint
|-- src

|-- conpaas
|-- services

40 Chapter 4. Internals

ConPaaS Documentation, Release 1.4.2

|-- blueprint
|-- agent
| |-- agent.py
| |-- client.py
| |-- __init__.py
|-- __init__.py
|-- manager

|-- client.py
|-- __init__.py
|-- manager.py

Edit create-new-service-from-blueprints.sh and change the following lines to set up the script:

BP_lc_name=foobar # Lowercase service name in the tree
BP_mc_name=FooBar # Mixedcase service name in the tree
BP_uc_name=FOOBAR # Uppercase service name in the tree
BP_bp_name=’Foo Bar’ # Selection name as shown on the frontend create.php page
BP_bp_desc=’My new FooBar Service’ # Description as shown on the frontend create.php page
BP_bp_num=511 # Service sequence number for

conpaas-services/scripts/create_vm/create-img-script.cfg
Please look in conpaas-services/scripts/create_vm/scripts
for the first available number

Running the script in the ConPaaS root will copy the files from the tree above to the appropriate places in the
conpaas-client, conpaas-frontend and conpaas-services trees. In the process of copying, the
above keywords will be replaced by the values you entered, and files and directories named *blueprint* will
be replaced by the new service name. Furthermore, the following files will be adjusted similarly:

conpaas-services/src/conpaas/core/services.py
conpaas-frontend/www/create.php
conpaas-frontend/www/lib/ui/page/PageFactory.php
conpaas-frontend/www/lib/service/factory/__init__.php

Now you are ready to set up the specifics for your service. In most newly created files you will find the following
comment

*TODO: as this file was created from a BLUEPRINT file, you may want to
change ports, paths and/or methods (e.g. for hub) to meet your specific
service/server needs*.

So it’s a good idea to do just that.

4.4 Implementing a new ConPaaS service by hand

In this section we describe how to implement a new ConPaaS service by providing an example which can be
used as a starting point. The new service is called helloworld and will just generate helloworld strings. Thus, the
manager will provide a method, called get_helloworld which will ask all the agents to return a ’helloworld’ string
(or another string chosen by the manager).

We will start by implementing the agent. We will create a class, called HelloWorldAgent, which implements
the required method - get_helloworld, and put it in conpaas/services/helloworld/agent/agent.py (Note: make the
directory structure as needed and providing empty __init__.py to make the directory be recognized as a module
path). As you can see in Listing 7, this class uses some functionality provided in the conpaas.core package. The
conpaas.core.expose module provides a python decorator (@expose) that can be used to expose the http methods
that the agent server dispatches. By using this decorator, a dictionary containing methods for http requests GET,
POST or UPLOAD is filled in behind the scenes. This dictionary is used by the built-in server in the conpaas.core
package to dispatch the HTTP requests. The module conpaas.core.http contains some useful methods, like HttpJ-
sonResponse and HttpErrorResponse that are used to respond to the HTTP request dispatched to the corresponding
method. In this class we also implemented a method called startup, which only changes the state of the agent.
This method could be used, for example, to make some initializations in the agent. We will describe later the use
of the other method, check_agent_process.

4.4. Implementing a new ConPaaS service by hand 41

ConPaaS Documentation, Release 1.4.2

Listing 7: conpaas/services/helloworld/agent/agent.py

from conpaas.core.expose import expose

from conpaas.core.https.server import HttpJsonResponse, HttpErrorResponse

from conpaas.core.agent import BaseAgent

class HelloWorldAgent(BaseAgent):
def __init__(self,

config_parser, # config file

**kwargs): # anything you can’t send in config_parser
(hopefully the new service won’t need anything extra)

BaseAgent.__init__(self, config_parser)
self.gen_string = config_parser.get(’agent’, ’STRING_TO_GENERATE’)

@expose(’POST’)
def startup(self, kwargs):

self.state = ’RUNNING’
self.logger.info(’Agent started up’)
return HttpJsonResponse()

@expose(’GET’)
def get_helloworld(self, kwargs):

if self.state != ’RUNNING’:
return HttpErrorResponse(’ERROR: Wrong state to get_helloworld’)

return HttpJsonResponse({’result’:self.gen_string})

Let’s assume that the manager wants each agent to generate a different string. The agent should be informed about
the string that it has to generate. To do this, we could either implement a method inside the agent, that will receive
the required string, or specify this string in the configuration file with which the agent is started. We opted for the
second method just to illustrate how a service could make use of the config files and also, maybe some service
agents/managers need some information before having been started.

Therefore, we will provide the helloworld-agent.cfg file (see Listing 8) that will be concatenated to the default-
manager.cfg file. It contains a variable ($STRING) which will be replaced by the manager.

Listing 8: ConPaaS/config/agent/helloworld-agent.cfg

STRING_TO_GENERATE = $STRING

Now let’s implement an http client for this new agent server. See Listing 9. This client will be used by the manager
as a wrapper to easily send requests to the agent. We used some useful methods from conpaas.core.http, to send
json objects to the agent server.

Listing 9: conpaas/services/helloworld/agent/client.py

import json
import httplib

from conpaas.core import https

def _check(response):
code, body = response
if code != httplib.OK: raise Exception(’Received http response code %d’ % (code))
data = json.loads(body)
if data[’error’]: raise Exception(data[’error’])
else: return data[’result’]

def check_agent_process(host, port):
method = ’check_agent_process’
return _check(https.client.jsonrpc_get(host, port, ’/’, method))

def startup(host, port):

42 Chapter 4. Internals

ConPaaS Documentation, Release 1.4.2

method = ’startup’
return _check(https.client.jsonrpc_post(host, port, ’/’, method))

def get_helloworld(host, port):
method = ’get_helloworld’
return _check(https.client.jsonrpc_get(host, port, ’/’, method))

Next, we will implement the manager in the same manner: we will write the HelloWorldManager class and
place it in the file conpaas/services/helloworld/manager/manager.py. (See Listing 10) To make use of the IaaS
abstractions, we need to instantiate a Controller which controls all the requests to the clouds on which ConPaaS is
running. Note the lines:

1: self.controller = Controller(config_parser)
2: self.controller.generate_context(’helloworld’)

The first line instantiates a Controller. The controller maintains a list of cloud objects generated from the con-
fig_parser file. There are several functions provided by the controller which are documented in the doxygen
documentation of file controller.py. The most important ones, which are also used in the Hello World service
implementation, are: generate_context (which generates a template of the contextualization file); update_context
(which takes the contextualization template and replaces the variables with the supplied values); create_nodes
(which asks for additional nodes from the specified cloud or the default one) and delete_nodes (which deletes the
specified nodes).

Note that the create_nodes function accepts as a parameter a function (in our case check_agent_process) that tests
if the agent process started correctly in the agent VM. If an exception is generated during the calls to this function
for a given period of time, then the manager assumes that the agent process didn’t start correctly and tries to start
the agent process on a different agent VM.

Listing 10: conpaas/services/helloworld/manager/manager.py

from threading import Thread

from conpaas.core.expose import expose
from conpaas.core.manager import BaseManager

from conpaas.core.https.server import HttpJsonResponse, HttpErrorResponse

from conpaas.services.helloworld.agent import client

class HelloWorldManager(BaseManager):

Manager states - Used by the Director
S_INIT = ’INIT’ # manager initialized but not yet started
S_PROLOGUE = ’PROLOGUE’ # manager is starting up
S_RUNNING = ’RUNNING’ # manager is running
S_ADAPTING = ’ADAPTING’ # manager is in a transient state - frontend will keep

polling until manager out of transient state
S_EPILOGUE = ’EPILOGUE’ # manager is shutting down
S_STOPPED = ’STOPPED’ # manager stopped
S_ERROR = ’ERROR’ # manager is in error state

def __init__(self, config_parser, **kwargs):
BaseManager.__init__(self, config_parser)
self.nodes = []
Setup the clouds’ controller
self.controller.generate_context(’helloworld’)
self.state = self.S_INIT

def _do_startup(self, cloud):
startCloud = self._init_cloud(cloud)

self.controller.add_context_replacement(dict(STRING=’helloworld’))

4.4. Implementing a new ConPaaS service by hand 43

ConPaaS Documentation, Release 1.4.2

try:
nodes = self.controller.create_nodes(1,

client.check_agent_process, self.AGENT_PORT, startCloud)

node = nodes[0]

client.startup(node.ip, 5555)

Extend the nodes list with the newly created one
self.nodes += nodes
self.state = self.S_RUNNING

except Exception, err:
self.logger.exception(’_do_startup: Failed to create node: %s’ % err)
self.state = self.S_ERROR

@expose(’POST’)
def shutdown(self, kwargs):

self.state = self.S_EPILOGUE
Thread(target=self._do_shutdown, args=[]).start()
return HttpJsonResponse()

def _do_shutdown(self):
self.controller.delete_nodes(self.nodes)
self.nodes = []
self.state = self.S_STOPPED

@expose(’POST’)
def add_nodes(self, kwargs):

if self.state != self.S_RUNNING:
return HttpErrorResponse(’ERROR: Wrong state to add_nodes’)

if ’node’ in kwargs:
kwargs[’count’] = kwargs[’node’]

if not ’count’ in kwargs:
return HttpErrorResponse("ERROR: Required argument doesn’t exist")

if not isinstance(kwargs[’count’], int):
return HttpErrorResponse(’ERROR: Expected an integer value for "count"’)

count = int(kwargs[’count’])
self.state = self.S_ADAPTING
Thread(target=self._do_add_nodes, args=[count]).start()
return HttpJsonResponse()

def _do_add_nodes(self, count):
node_instances = self.controller.create_nodes(count,

client.check_agent_process, 5555)

self.nodes += node_instances
Startup agents
for node in node_instances:

client.startup(node.ip, 5555)

self.state = self.S_RUNNING
return HttpJsonResponse()

@expose(’GET’)
def list_nodes(self, kwargs):

if len(kwargs) != 0:
return HttpErrorResponse(’ERROR: Arguments unexpected’)

if self.state != self.S_RUNNING:

44 Chapter 4. Internals

ConPaaS Documentation, Release 1.4.2

return HttpErrorResponse(’ERROR: Wrong state to list_nodes’)

return HttpJsonResponse({
’helloworld’: [node.id for node in self.nodes],
})

@expose(’GET’)
def get_service_info(self, kwargs):

if len(kwargs) != 0:
return HttpErrorResponse(’ERROR: Arguments unexpected’)

return HttpJsonResponse({’state’: self.state, ’type’: ’helloworld’})

@expose(’GET’)
def get_node_info(self, kwargs):

if ’serviceNodeId’ not in kwargs:
return HttpErrorResponse(’ERROR: Missing arguments’)

serviceNodeId = kwargs.pop(’serviceNodeId’)

if len(kwargs) != 0:
return HttpErrorResponse(’ERROR: Arguments unexpected’)

serviceNode = None
for node in self.nodes:

if serviceNodeId == node.id:
serviceNode = node
break

if serviceNode is None:
return HttpErrorResponse(’ERROR: Invalid arguments’)

return HttpJsonResponse({
’serviceNode’: {

’id’: serviceNode.id,
’ip’: serviceNode.ip
}

})

@expose(’POST’)
def remove_nodes(self, kwargs):

if self.state != self.S_RUNNING:
return HttpErrorResponse(’ERROR: Wrong state to remove_nodes’)

if ’node’ in kwargs:
kwargs[’count’] = kwargs[’node’]

if not ’count’ in kwargs:
return HttpErrorResponse("ERROR: Required argument doesn’t exist")

if not isinstance(kwargs[’count’], int):
return HttpErrorResponse(’ERROR: Expected an integer value for "count"’)

count = int(kwargs[’count’])
self.state = self.S_ADAPTING
Thread(target=self._do_remove_nodes, args=[count]).start()
return HttpJsonResponse()

def _do_remove_nodes(self, count):
for _ in range(0, count):

self.controller.delete_nodes([self.nodes.pop()])

self.state = self.S_RUNNING

4.4. Implementing a new ConPaaS service by hand 45

ConPaaS Documentation, Release 1.4.2

return HttpJsonResponse()

@expose(’GET’)
def get_helloworld(self, kwargs):

if self.state != self.S_RUNNING:
return HttpErrorResponse(’ERROR: Wrong state to get_helloworld’)

messages = []

Just get_helloworld from all the agents
for node in self.nodes:

data = client.get_helloworld(node.ip, 5555)
message = ’Received %s from %s’ % (data[’result’], node.id)
self.logger.info(message)
messages.append(message)

return HttpJsonResponse({ ’helloworld’: "\n".join(messages) })

We can also implement a client for the manager server (see Listing 11). This will allow us to use the command
line interface to send requests to the manager, if the frontend integration is not available.

Listing 11: conpaas/services/helloworld/manager/client.py

import httplib , json
from conpaas.core.http import HttpError, _jsonrpc_get, _jsonrpc_post, _http_post, _http_get

def _check(response):
code, body = response
if code != httplib.OK: raise HttpError(’Received http response code %d’ % (code))
data = json.loads(body)
if data[’error’]: raise Exception(data[’error’])
else : return data[’result’]

def get_service_info(host, port):
method = ’get_service_info’
return _check(_jsonrpc_get(host, port , ’/’ , method))

def get_helloworld(host, port):
method = ’get_helloworld’
return _check(_jsonrpc_get(host, port , ’/’ , method))

def startup(host, port):
method = ’startup’
return _check(_jsonrpc_get(host, port , ’/’ , method))

def add_nodes(host, port , count=0):
method = ’add_nodes’
params = {}
params[’count’] = count
return _check(_jsonrpc_post(host, port , ’/’, method, params=params))

def remove_nodes(host , port , count=0):
method = ’remove_nodes’
params = {}
params[’count’] = count
return _check(_jsonrpc_post(host, port , ’/’, method, params=params))

def list_nodes(host, port):
method = ’list_nodes’
return _check(_jsonrpc_get(host, port , ’/’ , method))

The last step is to register the new service to the conpaas core. One entry must be added to file con-
paas/core/services.py, as it is indicated in Listing 12. Because the Java and PHP services use the same code

46 Chapter 4. Internals

ConPaaS Documentation, Release 1.4.2

for the agent, there is only one entry in the agent services, called web which is used by both webservices.

Listing 12: conpaas/core/services.py

-*- coding: utf-8 -*-

"""
conpaas.core.services
=====================

ConPaaS core: map available services to their classes.

:copyright: (C) 2010-2013 by Contrail Consortium.
"""

manager_services = {’php’ : {’class’ : ’PHPManager’,
’module’: ’conpaas.services.webservers.manager.internal.php’},

’java’ : {’class’ : ’JavaManager’,
’module’: ’conpaas.services.webservers.manager.internal.java’},

’scalaris’ : {’class’ : ’ScalarisManager’,
’module’: ’conpaas.services.scalaris.manager.manager’},

’hadoop’ : {’class’ : ’MapReduceManager’,
’module’: ’conpaas.services.mapreduce.manager.manager’},

’helloworld’ : {’class’ : ’HelloWorldManager’,
’module’: ’conpaas.services.helloworld.manager.manager’},

’xtreemfs’ : {’class’ : ’XtreemFSManager’,
’module’: ’conpaas.services.xtreemfs.manager.manager’},

’selenium’ : {’class’ : ’SeleniumManager’,
’module’: ’conpaas.services.selenium.manager.manager’},

’taskfarm’ : {’class’ : ’TaskFarmManager’,
’module’: ’conpaas.services.taskfarm.manager.manager’},

’galera’ : {’class’ : ’GaleraManager’,
’module’: ’conpaas.services.galera.manager.manager’},

’htcondor’ : {’class’ : ’HTCondorManager’,
’module’: ’conpaas.services.htcondor.manager.manager’},

’htc’ : {’class’ : ’HTCManager’,
’module’: ’conpaas.services.htc.manager.manager’},

#""" BLUE_PRINT_INSERT_MANAGER do not remove this line: it is a placeholder for installing new services """
}

agent_services = {’web’ : {’class’ : ’WebServersAgent’,
’module’: ’conpaas.services.webservers.agent.internals’},

’scalaris’ : {’class’ : ’ScalarisAgent’,
’module’: ’conpaas.services.scalaris.agent.agent’},

’mapreduce’ : {’class’ : ’MapReduceAgent’,
’module’: ’conpaas.services.mapreduce.agent.agent’},

’helloworld’ : {’class’ : ’HelloWorldAgent’,
’module’: ’conpaas.services.helloworld.agent.agent’},

’xtreemfs’ : {’class’ : ’XtreemFSAgent’,
’module’: ’conpaas.services.xtreemfs.agent.agent’},

’selenium’ : {’class’ : ’SeleniumAgent’,
’module’: ’conpaas.services.selenium.agent.agent’},

’galera’ : {’class’ : ’GaleraAgent’,
’module’: ’conpaas.services.galera.agent.internals’},

’htcondor’ : {’class’ : ’HTCondorAgent’,
’module’: ’conpaas.services.htcondor.agent.agent’},

’htc’ : {’class’ : ’HTCAgent’,
’module’: ’conpaas.services.htc.agent.agent’},

#""" BLUE_PRINT_INSERT_AGENT do not remove this line: it is a placeholder for installing new services """
}

4.4. Implementing a new ConPaaS service by hand 47

ConPaaS Documentation, Release 1.4.2

4.5 Integrating the new service with the frontend

So far there is no easy way to add a new frontend service. Each service may require distinct graphical elements.
In this section we explain how the Hello World frontend service has been created.

4.5.1 Manager states

As you have noticed in the Hello World manager implementation, we used some standard states, e.g. INIT,
ADAPTING, etc. By calling the get_service_info function, the frontend knows in which state the manager is.
Why do we need these standardized stated? As an example, if the manager is in the ADAPTING state, the
frontend would know to draw a loading icon on the interface and keep polling the manager.

4.5.2 Files to be modified

frontend
|-- www

|-- create.php
|-- lib

|-- service
|-- factory

|-- __init__.php

Several lines of code must be added to the two files above for the new service to be recognized. If you look inside
these files, you’ll see that knowing where to add the lines and what lines to add is self-explanatory.

4.5.3 Files to be added

frontend
|-- www

|-- lib
| |-- service
| | |-- helloworld
| | |-- __init__.php
| |-- ui
| |-- instance
| |-- helloworld
| |-- __init__.php
|-- images

|-- helloworld.png

48 Chapter 4. Internals

Index

C
CONPAAS_CONF_DIR, 10

D
DIRECTOR_URL, 4, 7

E
environment variable

CONPAAS_CONF_DIR, 10
DIRECTOR_URL, 4, 7
OTHER_CLOUDS, 6
VPN_BASE_NETWORK, 6
VPN_BOOTSTRAP_NODES, 6
VPN_NETMASK, 6
VPN_SERVICE_BITS, 6

O
OTHER_CLOUDS, 6

V
VPN_BASE_NETWORK, 6
VPN_BOOTSTRAP_NODES, 6
VPN_NETMASK, 6
VPN_SERVICE_BITS, 6

49

	Introduction
	Installation
	Director installation
	Command line tool installation
	Frontend installation
	Creating A ConPaaS Services VM Image
	ConPaaS on Amazon EC2
	ConPaaS on OpenNebula
	ConPaaS in a Nutshell

	User Guide
	Usage overview
	Tutorial: hosting WordPress in ConPaaS
	The PHP Web hosting service
	The Java Web hosting service
	The MySQL Database Service
	The Scalarix key-value store service
	The MapReduce service
	The TaskFarming service
	The XtreemFS service
	The HTC service
	ConPaaS in a VirtualBox Nutshell

	Internals
	Introduction
	Service Organization
	Implementing a new ConPaaS service using blueprints
	Implementing a new ConPaaS service by hand
	Integrating the new service with the frontend

