

 Navigation

 	
 index

 	
 next |

 	ConPaaS 1.5.1 documentation

ConPaaS documentation

Contents:

	Introduction

	Installation
	Director installation

	Command line tool installation

	Frontend installation

	ConPaaS on Amazon EC2

	ConPaaS on OpenStack

	ConPaaS on OpenNebula

	ConPaaS in a Nutshell

	ConPaaS on Raspberry PI

	User Guide
	Usage overview

	Tutorial: hosting WordPress in ConPaaS

	The PHP Web hosting service

	The Java Web hosting service

	The MySQL Database Service

	The Scalarix key-value store service

	The MapReduce service

	The TaskFarming service

	The XtreemFS service

	The HTC service

	The Generic service

	ConPaaS in a VirtualBox Nutshell

	ConPaaS on Raspberry PI

	Manifest Guide
	Creating an application from a manifest

	Generating a manifest from a created application

	Complete description of the manifest fields

	Internals
	Introduction

	Service Organization

	Implementing a new ConPaaS service using blueprints

	Implementing a new ConPaaS service by hand

	Integrating the new service with the frontend

	Creating A ConPaaS Services VM Image

	Creating a Nutshell image

	Preinstalling an application into a ConPaaS Services Image

	Application Programming Interface
	Python API

	RESTful API

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2012-2015, Contrail and HARNESS consortia.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ConPaaS 1.5.1 documentation

Introduction

ConPaaS (http://www.conpaas.eu) is an open-source runtime environment
for hosting applications in the cloud which aims at offering the full
power of the cloud to application developers while shielding them from
the associated complexity of the cloud.

ConPaaS is designed to host both high-performance scientific
applications and online Web applications. It runs on a variety of
public and private clouds, and is easily extensible. ConPaaS automates
the entire life-cycle of an application, including collaborative
development, deployment, performance monitoring, and automatic
scaling. This allows developers to focus their attention on
application-specific concerns rather than on cloud-specific details.

ConPaaS is organized as a collection of services, where each service
acts as a replacement for a commonly used runtime environment. For
example, to replace a MySQL database, ConPaaS provides a cloud-based
MySQL service which acts as a high-level database abstraction. The
service uses real MySQL databases internally, and therefore makes it
easy to port a cloud application to ConPaaS. Unlike a regular
centralized database, however, it is self-managed and fully elastic:
one can dynamically increase or decrease its processing capacity by
requesting it to reconfigure itself with a different number of virtual
machines.

 Copyright 2012-2015, Contrail and HARNESS consortia.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ConPaaS 1.5.1 documentation

Installation

The central component of ConPaaS is called the ConPaaS Director
(cpsdirector). It is responsible for handling user authentication,
creating new applications, handling their life-cycle and much
more. cpsdirector is a web service exposing all its
functionalities via an HTTP-based API.

ConPaaS can be used either via a command line interface (called
cpsclient) or through a web frontend (cpsfrontend). More
recently, a new command line interface called cps-tools has
become available (note: cps-tools requires Python 2.7). This
document explains how to install and configure all the aforementioned
components.

ConPaaS’s cpsdirector and its two clients, cpsclient and cpsfrontend,
can be installed on your own hardware or on virtual machines running on public
or private clouds. If you wish to install them on Amazon EC2, the Official Debian
Wheezy, Ubuntu 12.04 or Ubuntu 14.04 images are known to work well.

ConPaaS services are designed to run either in an OpenStack or OpenNebula cloud
installation or in the Amazon Web Services cloud.

Installing ConPaaS requires to take the following steps:

	Choose a VM image customized for hosting the services, or create a
new one. Details on how to do this vary depending on the choice of cloud
where ConPaaS will run. Instructions on how to configure ConPaaS with
Amazon EC2 can be found in ConPaaS on Amazon EC2. The section
ConPaaS on OpenStack describes how to configure ConPaaS to work
with an OpenStack cloud and sectionConPaaS on OpenNebula describes
the configurations needed for an OpenNebula cloud.

	Install and configure cpsdirector as explained in
Director installation. All system configuration takes place in the
director.

	Install and configure cpsclient as explained in
Installing and configuring cpsclient.py.

	Install and configure cps-tools as explained in
Installing and configuring cps-tools.

	Install cpsfrontend and configure it to use your ConPaaS
director as explained in Frontend installation.

Director installation

The ConPaaS Director is a web service that allows users to manage their ConPaaS
applications. Users can create, configure and terminate their cloud
applications through it. This section describes the process of setting up a
ConPaaS director on a Debian/Ubuntu GNU/Linux system. Although the ConPaaS director
might run on other distributions, only Debian versions 6.0 (Squeeze) and 7.0 (Wheezy),
and Ubuntu versions 12.04 (Precise Pangolin) and 14.04 (Trusty Tahr) are officially supported.
Also, only official APT repositories should be enabled in /etc/apt/sources.list and
/etc/apt/sources.list.d/.

cpsdirector is available here:
http://www.conpaas.eu/dl/cpsdirector-1.x.x.tar.gz. The tarball includes an
installation script called install.sh for your convenience. You can
either run it as root or follow the installation procedure outlined below in
order to setup your ConPaaS Director installation.

	Install the required packages:

$ sudo apt-get update
$ sudo apt-get install build-essential python-setuptools python-dev
$ sudo apt-get install apache2 libapache2-mod-wsgi libcurl4-openssl-dev

	Make sure that your system’s time and date are set correctly by installing
and running ntpdate:

$ sudo apt-get install ntpdate
$ sudo ntpdate 0.us.pool.ntp.org

>> If the NTP socket is in use, you can type:
$ sudo service ntp stop
>> and again
$ sudo ntpdate 0.us.pool.ntp.org

	Download http://www.conpaas.eu/dl/cpsdirector-1.x.x.tar.gz and
uncompress it

	Run make install as root

	After all the required packages are installed, you will get prompted for
your hostname. Please provide your public IP address / hostname

	Edit /etc/cpsdirector/director.cfg providing your cloud
configuration. Among other things, you will have to choose an Amazon
Machine Image (AMI) in case you want to use ConPaaS on Amazon EC2,
an OpenStack image if you want to use ConPaaS on OpenStack, or
an OpenNebula image if you want to use ConPaaS on OpenNebula.
SectionConPaaS on Amazon EC2 explains how to use the Amazon Machine Images
provided by the ConPaaS team, as well as how to make your own images
if you wish to do so. A description of how to create an OpenStack
image suitable for ConPaaS is available in ConPaaS on OpenStack and
ConPaaS on OpenNebula contains instructions for OpenNebula.

The installation process will create an Apache VirtualHost for the ConPaaS
director in /etc/apache2/sites-available/conpaas-director.conf for Apache 2.4
or /etc/apache2/sites-available/conpaas-director for older versions of Apache.
There should be no need for you to modify such a file, unless its defaults conflict with
your Apache configuration.

Run the following commands as root to start your ConPaaS director for
the first time:

$ sudo a2enmod ssl
$ sudo a2enmod wsgi
$ sudo a2ensite conpaas-director
$ sudo service apache2 restart

If you experience any problems with the previously mentioned commands,
it might be that the default VirtualHost created by the ConPaaS director
installation process conflicts with your Apache configuration. The
Apache Virtual Host documentation might be useful to fix those issues:
http://httpd.apache.org/docs/2.2/vhosts/.

Finally, you can start adding users to your ConPaaS installation as follows:

$ sudo cpsadduser.py

SSL certificates

ConPaaS uses SSL certificates in order to secure the communication
between you and the director, but also to ensure that only authorized
parties such as yourself and the various component of ConPaaS can
interact with the system.

It is therefore crucial that the SSL certificate of your director contains the
proper information. In particular, the commonName field of the certificate
should carry the public hostname of your director, and it should match the
hostname part of DIRECTOR_URL in
/etc/cpsdirector/director.cfg. The installation procedure takes care
of setting up such a field. However, should your director hostname change,
please ensure you run the following commands:

$ sudo cpsconf.py
$ sudo service apache2 restart

Director database

The ConPaaS Director uses a SQLite database to store information about
registered users and running services. It is not normally necessary for
ConPaaS administrators to directly access such a database. However,
should the need arise, it is possible to inspect and modify the database
as follows:

$ sudo apt-get install sqlite3
$ sudo sqlite3 /etc/cpsdirector/director.db

If you have an existing installation (version 1.4.0 and earlier) you
should upgrade your database to contain the extra uuid field needed
for external IdP usage (see next topic) and the extra openid field
needed for OpenID support:

$ sudo add-user-columns-to-db.sh

This script will warn you when you try to upgrade an already upgraded database.

On a fresh installation the database will be created on the fly.

Contrail IdP and SimpleSAML

ConPaaS can optionally delegate its user authentication to an external
service. For registration and login through the Contrail
Identification Provider you have to install the SimpleSAML package
simplesamlphp-1.11.0 as follows:

$ wget http://simplesamlphp.googlecode.com/files/simplesamlphp-1.11.0.tar.gz
$ tar xzf simplesamlphp-1.11.0.tar.gz
$ cd simplesamlphp-1.11.0
$ cd cert ; openssl req -newkey rsa:2048 -new -x509 -days 3652 -nodes -out saml.crt -keyout saml.pem

Edit file ../metadata/saml20-idp-remote.php and replace the $metadata
array by the code found in the simpleSAMLphp flat file format part at
the end of the browser output of
https://multi.contrail.xlab.si/simplesaml/saml2/idp/metadata.php?output=xhtml .

Modify the authentication sources to contain the following lines (do
not copy the line numbers):

$ cd ../config ; vi authsources.php
25 // 'idp' => NULL,
26 'idp' => 'https://multi.contrail.xlab.si/simplesaml/saml2/idp/metadata.php',

32 // next lines added by (your name)
33 'privatekey' => 'saml.pem',
34 'certificate' => 'saml.crt',

Copy your SimpleSAML tree to /usr/share

$ cd ../../
$ tar cf - simplesamlphp-1.11.0 | (cd /usr/share ; sudo tar xf -)

Change ownerships:

$ cd /usr/share/simplesamlphp-1.11.0
$ sudo chown www-data www log
$ sudo chgrp www-data www log

Now edit /etc/apache2/sites-enabled/default-ssl.conf to contain the
following lines (line numbers may vary depending on your current
situation):

5 Alias /simplesaml /usr/share/simplesamlphp-1.11.0/www

18 <Directory /usr/share/simplesamlphp-1.11.0/www>
19 Options Indexes FollowSymLinks MultiViews
20 AllowOverride None
21 Order allow,deny
22 allow from all
23 </Directory>

And the last thing to do: register your director domain name or IP at
contrail@lists.xlab.si. This will enable you to use the federated login
service provided by the Contrail project.

Multi-cloud support

ConPaaS services can be created and scaled on multiple heterogeneous clouds.

In order to configure cpsdirector to use multiple clouds, you need to set
the OTHER_CLOUDS variable in the [iaas] section of
/etc/cpsdirector/director.cfg. For each cloud name defined in
OTHER_CLOUDS you need to create a new configuration section named
after the cloud itself. Please refer to
/etc/cpsdirector/director.cfg.multicloud-example for an example.

Virtual Private Networks with IPOP

Network connectivity between private clouds running on different
networks can be achieved in ConPaaS by using IPOP [http://www.grid-appliance.org/wiki/index.php/IPOP] (IP over P2P). This
is useful in particular to deploy ConPaaS instances across multiple
clouds. IPOP adds a virtual network interface to all ConPaaS instances
belonging to an application, allowing services to communicate over a
virtual private network as if they were deployed on the same LAN. This
is achieved transparently to the user and applications - the only
configuration needed to enable IPOP is to determine the network’s base
IP address, mask, and the number of IP addresses in this virtual
network that are allocated to each service.

VPN support in ConPaaS is per-application: each application you create will get
its own isolated IPOP Virtual Private Network. VMs running in the same application will
be able to communicate with each other.

In order to enable IPOP you need to set the following variables in
/etc/cpsdirector/director.cfg:

	VPN_BASE_NETWORK

	VPN_NETMASK

	VPN_SERVICE_BITS

Unless you need to access 172.16.0.0/12 networks, the default settings
available in /etc/cpsdirector/director.cfg.example are probably going
to work just fine.

The maximum number of services per application, as well as the number of agents
per service, is influenced by your choice of VPN_NETMASK and
VPN_SERVICE_BITS:

services_per_application = 2^VPN_SERVICE_BITS
agents_per_service = 2^(32 - NETMASK_CIDR - VPN_SERVICE_BITS) - 1

For example, by using 172.16.0.0 for VPN_BASE_NETWORK, 255.240.0.0
(/12) for VPN_NETMASK, and 5 VPN_SERVICE_BITS, you will get
a 172.16.0.0/12 network for each of your applications. Such a network space
will be then logically partitioned between services in the same application.
With 5 bits to identify the service, you will get a maximum number of 32
services per application (2^5) and 32767 agents per service (2^(32-12-5)-1).

Optional: specify your own bootstrap nodes.
When two VMs use IPOP, they need a bootstrap node to find each other.
IPOP comes with a default list of bootstrap nodes from PlanetLab servers which
is enough for most use cases.
However, you may want to specify your own bootstrap nodes (replacing the default list).
Uncomment and set VPN_BOOTSTRAP_NODES to the list of addresses
of your bootstrap nodes, one address per line.
A bootstrap node address specifies a protocol, an IP address and a port.
For example:

VPN_BOOTSTRAP_NODES =
 udp://192.168.35.2:40000
 tcp://192.168.122.1:40000
 tcp://172.16.98.5:40001

Troubleshooting

If for some reason your Director installation is not behaving as expected, here are a few frequent issues and their solutions.

If you cannot create services, try to run this on the machine holding your Director:

	Run the cpscheck.py command as root to attempt an automatic detection of
possible misconfigurations.

	Check your system’s time and date settings as explained previously.

	Test network connectivity between the director and the virtual machines
deployed on the cloud(s) you are using.

	Check the contents of /var/log/apache2/director-access.log and
/var/log/apache2/director-error.log.

If services get created, but they fail to startup properly, you should try to
ssh into your manager VM as root and:

	Make sure that a ConPaaS manager process has been started:

root@conpaas:~# ps x | grep cpsmanage[r]
 968 ? Sl 0:02 /usr/bin/python /root/ConPaaS/sbin/manager/php-cpsmanager -c /root/config.cfg -s 192.168.122.15

	If a ConPaaS manager process has not been started, you should check if
the manager VM can download a copy of the ConPaaS source code from the
director. From the manager VM:

root@conpaas:~# wget --ca-certificate /etc/cpsmanager/certs/ca_cert.pem \
 `awk '/BOOTSTRAP/ { print $3 }' /root/config.cfg`/ConPaaS.tar.gz

The URL used by your manager VM to download the ConPaaS source code depends
on the value you have set on your Director in
/etc/cpsdirector/director.cfg for the variable DIRECTOR_URL.

	See if your manager’s port 443 is open and reachable from your
Director. In the following example, our manager’s IP address is 192.168.122.15
and we are checking if the director can contact the manager on port 443:

root@conpaas-director:~# apt-get install nmap
root@conpaas-director:~# nmap -p443 192.168.122.15
Starting Nmap 6.00 (http://nmap.org) at 2013-05-14 16:17 CEST
Nmap scan report for 192.168.122.15
Host is up (0.00070s latency).
PORT STATE SERVICE
443/tcp open https

Nmap done: 1 IP address (1 host up) scanned in 0.08 seconds

	Check the contents of /root/manager.err, /root/manager.out
and /var/log/cpsmanager.log.

	If the Director fails to respond to requests and you receive errors such as
No ConPaaS Director at the provided URL: HTTP Error 403: Forbidden or
403 Access Denied, you need to allow access to the root file system,
which is denied by default in newer versions of apache2.
You can fix this by modifying the file /etc/apache2/apache2.conf.
In particular, you need to replace these lines:

<Directory />
 Options FollowSymLinks
 AllowOverride all
 Order deny,allow
 Allow from all
</Directory>

with these others:

<Directory />
 Options Indexes FollowSymLinks Includes ExecCGI
 AllowOverride all
 Order deny,allow
 Allow from all
</Directory>

Command line tool installation

There are two command line clients: an old one called cpsclient.py
and a more recent one called cps-tools.

Installing and configuring cpsclient.py

The command line tool cpsclient can be installed as root or as a
regular user. Please note that libcurl development files (binary package
libcurl4-openssl-dev on Debian/Ubuntu systems) need to be installed on
your system.

As root:

$ sudo easy_install http://www.conpaas.eu/dl/cpsclient-1.x.x.tar.gz

(do not forget to replace 1.x.x with the exact number of the ConPaaS release you are using)

Or, if you do not have root privileges, cpsclient can also be installed in
a Python virtual environment if virtualenv is available on your machine:

$ virtualenv conpaas # create the 'conpaas' virtualenv
$ cd conpaas
$ source bin/activate # activate it
$ easy_install http://www.conpaas.eu/dl/cpsclient-1.x.x.tar.gz

Configuring cpsclient.py:

$ cpsclient.py credentials
Enter the director URL: https://your.director.name:5555
Enter your username: xxxxx
Enter your password:
Authentication succeeded

Installing and configuring cps-tools

The command line cps-tools is a more recent command line client to interact
with ConPaaS.
It has essentially a modular internal architecture that is easier to extend.
It has also “object-oriented” arguments where “ConPaaS” objects are services, users, clouds and applications.
The argument consists in stating the “object” first and then calling a sub-command on it.
It also replaces the command line tool cpsadduser.py.

cps-tools requires:

	Python 2.7

	Python argparse module

	Python argcomplete module

If these are not yet installed, first follow the guidelines in Installing Python2.7 and virtualenv.

Installing cps-tools:

$ tar -xaf cps-tools-1.x.x.tar.gz
$ cd cps-tools-1.x.x
$./configure --sysconf=/etc
$ sudo make install

or:

$ make prefix=$HOME/src/virtualenv-1.11.4/ve install |& tee my-make-install.log
$ cd ..
$ pip install simplejson |& tee sjson.log
$ apt-get install libffi-dev |& tee libffi.log
$ pip install cpslib-1.x.x.tar.gz |& tee my-ve-cpslib.log

Configuring cps-tools:

$ mkdir -p $HOME/.conpaas
$ cp /etc/cps-tools.conf $HOME/.conpaas/
$ vim $HOME/.conpaas/cps-tools.conf
>> update 'director_url' and 'username'
>> do not update 'password' unless you want to execute scripts that must retrieve a certificate without interaction
$ cps-user get_certificate
>> enter you password
>> now you can use cps-tools commands

Installing Python2.7 and virtualenv

Recommended installation order is first python2.7, then virtualenv (you will need about 0.5GB of free disk space).
Check if the following packages are installed, and install them if not:

apt-get install gcc
apt-get install libreadline-dev
apt-get install -t squeeze-backports libsqlite3-dev libsqlite3-0
apt-get install tk8.4-dev libgdbm-dev libdb-dev libncurses-dev

Installing python2.7:

$ mkdir ~/src (choose a directory)
$ cd ~/src
$ wget --no-check-certificate http://www.python.org/ftp/python/2.7.2/Python-2.7.2.tgz
$ tar xzf Python-2.7.2.tgz
$ cd Python-2.7.2
$ mkdir $HOME/.localpython
$./configure --prefix=$HOME/.localpython |& tee my-config.log
$ make |& tee my-make.log
>> here you may safely ignore complaints about missing modules: bsddb185 bz2 dl imageop sunaudiodev
$ make install |& tee my-make-install.log

Installing virtualenv (here version 1.11.4):

$ cd ~/src
$ wget --no-check-certificate http://pypi.python.org/packages/source/v/virtualenv/virtualenv-1.11.4.tar.gz
$ tar xzf virtualenv-1.11.4.tar.gz
$ cd virtualenv-1.11.4
$ $HOME/.localpython/bin/python setup.py install (install virtualenv using P2.7)

$ $HOME/.localpython/bin/virtualenv ve -p $HOME/.localpython/bin/python2.7
New python executable in ve/bin/python2.7
Also creating executable in ve/bin/python
Installing setuptools, pip...done.
Running virtualenv with interpreter $HOME/.localpython/bin/python2.7

Activate virtualenv:

$ alias startVE='source $HOME/src/virtualenv-1.11.4/ve/bin/activate'
$ alias stopVE='deactivate'
$ startVE
(ve)$ python -V
Python 2.7.2
(ve)$

Install python argparse and argcomplete modules:

(ve)$ pip install argparse
(ve)$ pip install argcomplete
(ve)$ activate-global-python-argcomplete

Frontend installation

As for the Director, only Debian versions 6.0 (Squeeze) and 7.0 (Wheezy), and
Ubuntu versions 12.04 (Precise Pangolin) and 14.04 (Trusty Tahr) are officially
supported, and no external APT repository should be enabled. In a typical setup
Director and Frontend are installed on the same host, but such does not need to
be the case.

The ConPaaS Frontend can be downloaded from
http://www.conpaas.eu/dl/cpsfrontend-1.x.x.tar.gz.

After having uncompressed it you should install the required packages:

$ sudo apt-get install libapache2-mod-php5 php5-curl

Copy all the files contained in the www directory underneath your web
server document root. For example:

$ sudo cp -a www/ /var/www/

Copy conf/main.ini and conf/welcome.txt in your ConPaaS
Director configuration folder (/etc/cpsdirector). Modify those files to
suit your needs:

$ sudo cp conf/{main.ini,welcome.txt} /etc/cpsdirector/

Create a config.php file in the web server directory where you have
chosen to install the frontend. config-example.php is a good starting
point:

$ sudo cp www/config-example.php /var/www/config.php

Note that config.php must contain the CONPAAS_CONF_DIR
option, pointing to the directory mentioned in the previous step

By default, PHP sets a default maximum size for uploaded files to 2Mb
(and 8Mb to HTTP POST requests).
However, in the web frontend, users will need to upload larger files
(for example, a WordPress tarball is about 5Mb, a MySQL dump can be tens of Mb).
To set higher limits, set the properties post_max_size and upload_max_filesize
in file /etc/php5/apache2/php.ini. Note that property upload_max_filesize
cannot be larger than property post_max_size.

Enable SSL if you want to use your frontend via https, for example by
issuing the following commands:

$ sudo a2enmod ssl
$ sudo a2ensite default-ssl

Details about the SSL certificate you want to use have to be specified
in /etc/apache2/sites-available/default-ssl.

As a last step, restart your Apache web server:

$ sudo service apache2 restart

At this point, your front-end should be working!

ConPaaS on Amazon EC2

ConPaaS is capable of running over the Elastic Compute Cloud (EC2) of Amazon
Web Services (AWS). This section describes the process of configuring an AWS
account to run ConPaaS. You can skip this section if you plan to install ConPaaS
over OpenStack or OpenNebula, or use specialized versions such as the Nutshell
or ConPaaS on Raspberry PI.

If you are new to EC2, you will need to create an account on the Amazon
Elastic Compute Cloud [http://aws.amazon.com/ec2/]. A very good introduction
to EC2 is Getting Started with Amazon EC2 Linux Instances [http://docs.amazonwebservices.com/AWSEC2/latest/GettingStartedGuide/].

Pre-built Amazon Machine Images

ConPaaS requires the usage of an Amazon Machine Image (AMI) to contain the
dependencies of its processes. For your convenience we provide a pre-built
public AMI, already configured and ready to be used on Amazon EC2, for each
availability zone supported by ConPaaS. The AMI IDs of said images are:

	ami-7a565912 United States East (Northern Virginia)

	ami-b7dd31f3 United States West (Northern California)

	ami-e57f49d5 United States West (Oregon)

	ami-7f7e1108 Europe West (Ireland)

	ami-3a0bc83a Asia Pacific (Tokyo)

	ami-fcdde1ae Asia Pacific (Singapore)

	ami-0b473b31 Asia Pacific (Sydney)

	ami-a154d0bc South America (Sao Paulo)

You can use one of these values when configuring your ConPaaS director
installation as described in Director installation.

Registering your custom VM image to Amazon EC2

Using prebuilt Amazon Machine Images is the recommended way of running ConPaaS
on Amazon EC2, as described in the previous section. If you plan to use one
of these AMIs, you can skip this section and continue with the configuration of
the Security Group.

You can also download a prebuilt ConPaaS services image that is suitable to be
used with Amazon EC2, for example in case you wish to run ConPaaS in a different
Availability Zone. This image is available from the following link:

	ConPaaS VM image for Amazon EC2 (x86_64):

	
http://www.conpaas.eu/dl/conpaas-amazon.img

MD5: f883943fa01c5b1c094d6dddeb64da86

size: 2.0 GB

In case you prefer to use a custom services image, you can also create a new
Amazon Machine Image yourself, by following the instructions from the Internals
guide: Creating A ConPaaS Services VM Image. Come back to this section after you already
generated the conpaas.img file.

Amazon AMIs are either stored on Amazon S3 (i.e. S3-backed AMIs) or on Elastic
Block Storage (i.e. EBS-backed AMIs). Each option has its own advantages;
S3-backed AMIs are usually more cost-efficient, but if you plan to use t1.micro
(free tier) your VM image should be hosted on EBS.

For an EBS-backed AMI, you should either create your conpaas.img on an Amazon
EC2 instance, or transfer the image to one. Once conpaas.img is there, you
should execute register-image-ec2-ebs.sh as root on the EC2 instance to
register your AMI. The script requires your EC2_ACCESS_KEY and
EC2_SECRET_KEY to proceed. At the end, the script will output your new AMI
ID. You can check this in your Amazon dashboard in the AMI section.

For a S3-backed AMI, you do not need to register your image from an EC2
instance. Simply run register-image-ec2-s3.sh where you have created your
conpaas.img. Note that you need an EC2 certificate with private key to be
able to do so. Registering an S3-backed AMI requires administrator privileges.
More information on Amazon credentials can be found at
About AWS Security Credentials [http://docs.aws.amazon.com/AWSSecurityCredentials/1.0/AboutAWSCredentials.html].

Security Group

An AWS security group is an abstraction of a set of firewall rules to
limit inbound traffic. The default policy of a new group is to deny all
inbound traffic. Therefore, one needs to specify a whitelist of
protocols and destination ports that are accessible from the outside.
The following ports should be open for all running instances:

	TCP ports 80, 443, 5555, 8000, 8080 and 9000 – used by the Web
Hosting service

	TCP ports 3306, 4444, 4567, 4568 – used by the MySQL service with
Galera extensions

	TCP ports 8020, 8021, 8088, 50010, 50020, 50030, 50060, 50070, 50075,
50090, 50105, 54310 and 54311 – used by the Map Reduce service

	TCP ports 4369, 14194 and 14195 – used by the Scalarix service

	TCP ports 2633, 8475, 8999 – used by the TaskFarm service

	TCP ports 32636, 32638 and 32640 – used by the XtreemFS service

AWS documentation is available at
http://docs.amazonwebservices.com/AWSEC2/latest/UserGuide/index.html?using-network-security.html.

ConPaaS on OpenStack

ConPaaS can be deployed over an OpenStack installation. This section
describes the process of configuring the DevStack version of OpenStack
to run ConPaaS. You can skip this section if you plan to deploy
ConPaaS over Amazon Web Services or OpenNebula.

In the rest of this section, the command-line examples assume that the user is
authenticated and able to run OpenStack commands (such as nova list) on the
controller node. If this is not the case, please refer first to the OpenStack
documentation:
http://docs.openstack.org/openstack-ops/content/lay_of_the_land.html.

If OpenStack was installed using the DevStack script, the easiest way to
set the environment variables that authenticate the user is to source the
openrc script from the devstack directory:

$ source devstack/openrc admin admin

Getting the OpenStack API access credentials

ConPaaS talks with an OpenStack deployment using the EC2 API, so first make
sure that EC2 API access is enabled for the OpenStack deployment and note
down the EC2 Access Key and EC2 Secret Key.

Using Horizon (the OpenStack dashboard), the EC2 access credentials can be
recovered by navigating to the Project > Compute > Access & Security
menu in the left pane of the dashboard and then selecting the API Access
tab. The EC2 Access Key and EC2 Secret key can be revealed by pressing the
View Credentials button located on the right side of the page.

Using the command line, the same credentials can be obtained by interrogating
Keystone (the OpenStack identity manager service) using the following command:

$ keystone ec2-credentials-list

For testing the EC2 API or obtaining necessary information, it is very often
useful to install the Eucalyptus client API tools (euca2ools). On a Debian /
Ubuntu system, this can be done using the following command:

$ sudo apt-get install euca2ools

Before executing any commands from this package, you must first export the
EC2_URL, EC2_ACCESS_KEY and EC2_SECRET_KEY environment variables,
using the values obtained by following the instructions above. In newer versions
of this package, these environment variables are renamed to EC2_URL,
AWS_ACCESS_KEY and AWS_SECRET_KEY.

Alternatively, OpenStack provides a script that, when sourced, automatically
exports all the required environment variables. Using the Horizon dashboard,
this script can be found by navigating to the Project > Compute > Access &
Security menu in the left pane and then selecting the API Access tab. An
archive containing this script (named ec2rc.sh) can be downloaded by
pressing the Download EC2 Credentials button.

An easy way to check that euca2ools commands work is by listing all the active
instances using:

$ euca-describe-instances

Registering your ConPaaS image to OpenStack

The prebuilt ConPaaS images suitable to be used with OpenStack can be downloaded
from the following links, depending on the virtualization tehnology and
system architecture you are using:

	ConPaaS VM image for OpenStack with KVM (x86_64):

	
http://www.conpaas.eu/dl/conpaas-openstack-kvm.img

MD5: 28299ac49cc216dde57b107000078c4f

size: 1.8 GB

	ConPaaS VM image for OpenStack with LXC (x86_64):

	
http://www.conpaas.eu/dl/conpaas-openstack-lxc.img

MD5: 45296e4cfcd44325a13703dc67da1d0b

size: 1.8 GB

	ConPaaS VM image for OpenStack with LXC for the Raspberry Pi (arm):

	
http://www.conpaas.eu/dl/ConPaaS-RPI/conpaas-rpi.img

MD5: c29cd086e8e0ebe7f0793e7d54304da4

size: 2.0 GB

This section assumes that you already downloaded one of the images above or
created one as explained in Creating A ConPaaS Services VM Image and uploaded it to your
OpenStack controller node. To register this image with OpenStack, you may
use either Horizon or the command line client of Glance (the OpenStack image
management service).

In Horizon, you can register the ConPaaS image by navigating to the Project >
Compute > Images menu in the left pane and then pressing the Create Image
button. In the next form, you should fill-in the image name, select Image File
as the image source and then click the Choose File button and select your
image (i.e. conpaas.img). The image format should be set to Raw.

Alternatively, using the command line, the ConPaaS image can be registered in
the following way:

$ glance image-create --name <image_name> --disk-format raw --container-format bare --file <conpaas.img>

In both cases, you need to obtain the AMI ID associated with the image in order
to allow ConPaaS to refer to it when using the EC2 API. To do this, you need to
execute the following command:

$ euca-describe-images

The AMI ID appears in the second column of the output.

Networking setup

ConPaaS requires instances to have public (floating) IP addresses assigned and
will only communicate with an instance using its public IP address.

First, you need to make sure that floating addresses are configured. You can
get a list containing all the configured floating IP addresses as follows:

$ nova floating-ip-bulk-list

If there are no addresses configured, you can add a new IP address range using
the following command:

$ nova floating-ip-bulk-create --pool public --interface <interface> <new_range>

for example, using the br100 interface and the 172.16.0.224/27 address
range:

$ nova floating-ip-bulk-create --pool public --interface br100 172.16.0.224/27

Second, OpenStack should be configured to assign a floating IP address at every
new instance creation. This can be done by adding the following line to the [DEFAULT]
section of the nova configuration file (/etc/nova/nova.conf):

auto_assign_floating_ip = True

Security Group

As in the case of Amazon Web Services deployments, OpenStack deployments use
security groups to limit the the network connections allowed to an instance.
The list of ports that should be opened for every instance is the same as in
the case of Amazon Web Services and can be consulted here: Security Group.

Your configured security groups can be found in Horizon by navigating to the
Project > Compute > Access & Security menu in the left pane of the dashboard
and then selecting the Security Groups tab.

Using the command line, the security groups can be listed using:

$ nova secgroup-list

You can use the default security group that is automatically created in every
project. However note that, unless the its default settings are changed, this
security group denies all incoming traffic.

For more details on creating and editing a security group, please refer to the
OpenStack documentation available at
http://docs.openstack.org/openstack-ops/content/security_groups.html.

SSH Key Pair

In order to use your OpenStack deployment with ConPaaS, you need to configure
an SSH key pair that will allow you to login to an instance without using a
password.

In Horizon, the key pairs can be found by navigating to the Project > Compute >
Access & Security menu and then selecting the Key Pairs tab.

Using the command line, the key pairs can be listed using:

$ nova keypair-list

By default there is no key pair configured, so you should create a new one or
import an already existing one.

Flavor

ConPaaS needs to know which instance type it can use, called flavor in OpenStack
terminology. There are quite a few flavors configured by default, which can also
be customized if needed.

The list of available flavors can obtained in Horizon by navigating to the
Admin > System > Flavors menu. Using the command line, the same result can
be obtained using:

$ nova flavor-list

ConPaaS on OpenNebula

ConPaaS is capable of running over an OpenNebula installation. This section
describes the process of configuring OpenNebula to run ConPaaS. You can skip
this section if you plan to deploy ConPaaS over Amazon Web Services or OpenStack,
or use specialized versions such as the Nutshell or ConPaaS on Raspberry PI.

Registering your ConPaaS image to OpenNebula

The prebuilt ConPaaS image suitable to be used with OpenNebula can be downloaded
from the following link:

	ConPaaS VM image for OpenNebula with KVM (x86_64):

	
http://www.conpaas.eu/dl/conpaas-opennebula-kvm.img

MD5: 32022d0e50f3253b121198d30c336ae8

size: 2.0 GB

This section assumes that you already downloaded the image from the link above or
created one as explained in Creating A ConPaaS Services VM Image. Upload your image (i.e.
conpaas.img) to your OpenNebula headnode. The headnode is where OpenNebula
services are running. You need have a valid OpenNebula account on the headnode
(i.e. onevm list works!). Although you have a valid account on OpenNebula,
you may have a problem similar to this:

/usr/lib/one/ruby/opennebula/client.rb:119:in `initialize’: ONE_AUTH file not present (RuntimeError)

You can fix it setting the ONE_AUTH variable like follows:

$ export ONE_AUTH="/var/lib/one/.one/one_auth"

To register your image, you should execute register-image-opennebula.sh on
the headnode. register-image-opennebula.sh needs the path to conpaas.img as
well as OpenNebula’s datastore ID and architecture type.

To get the datastore ID, you should execute this command on the headnode:

$ onedatastore list

The output of register-image-opennebula.sh will be your ConPaaS OpenNebula
image ID.

Make sure OpenNebula is properly configured

OpenNebula’s OCCI daemon is used by ConPaaS to communicate with your
OpenNebula cluster. The OCCI daemon is included in OpenNebula only up to
version 4.6 (inclusive), so later versions of OpenNebula are not officially
supported at the moment.

	The OCCI server should be configured to listen on the correct interface so that
it can receive connections from the managers located on the VMs. This can be
achieved by modifying the “host” IP (or FQDN - fully qualified domain name)
parameter from /etc/one/occi-server.conf and restarting the OCCI server.

	Ensure the OCCI server configuration file /etc/one/occi-server.conf
contains the following lines in section instance_types:

:custom:
 :template: custom.erb

	At the end of the OCCI profile file /etc/one/occi_templates/common.erb
from your OpenNebula installation, append the following lines:

<% @vm_info.each('OS') do |os| %>
 <% if os.attr('TYPE', 'arch') %>
 OS = [arch = "<%= os.attr('TYPE', 'arch').split('/').last %>"]
 <% end %>
<% end %>
GRAPHICS = [type="vnc",listen="0.0.0.0"]

These new lines adds a number of improvements from the standard version:

	The match for OS TYPE:arch allows the caller to specify the
architecture of the machine.

	The last line allows for using VNC to connect to the VM. This
is very useful for debugging purposes and is not necessary once
testing is complete.

	Make sure you started OpenNebula’s OCCI daemon:

sudo occi-server start

Please note that, by default, OpenNebula’s OCCI server performs a reverse DNS
lookup for each and every request it handles. This can lead to very poor
performances in case of lookup issues. It is recommended not to install
avahi-daemon on the host where your OCCI server is running. If it is
installed, you can remove it as follows:

sudo apt-get remove avahi-daemon

If your OCCI server still performs badly after removing avahi-daemon, we
suggest to disable reverse lookups on your OCCI server by editing
/usr/lib/ruby/$YOUR_RUBY_VERSION/webrick/config.rb and replacing the line:

:DoNotReverseLookup => nil,

with:

:DoNotReverseLookup => true,

ConPaaS in a Nutshell

ConPaaS in a Nutshell is an extension to the ConPaaS project which aims at
providing a cloud environment and a ConPaaS installation running on it, all
in a single VM, called the Nutshell. More specifically, this VM has an
all-in-one OpenStack installation running on top of LXC containers, as well
as a ConPaaS installation, including all of its components, already configured
to work in this environment.

The Nutshell VM can be deployed on various virtual environments, not only
standard clouds such as OpenNebula, OpenStack and EC2 but also on simpler
virtualization tools such as VirtualBox. Therefore, it provides a great developing
and testing environment for ConPaaS without the need of accessing a cloud.

The easiest way to try the Nutshell is to download the preassembled image
for VirtualBox. This can be done from the following link:

	VirtualBox VM containing ConPaaS in a Nutshell (7.6 GB):

	
http://www.conpaas.eu/dl/Nutshell-1.5.1.ova

MD5: 018ea0eaa6b6108ef020e00391ef3a96

Warning

It is always a good idea to check the integrity of a downloaded image before continuing
with the next step, as a corrupted image can lead to unexpected behaviour. You can do
this by comparing its MD5 hash with the one shown above. To obtain the MD5 hash, you
can use the md5sum command.

Alternatively, you can also create such an image or a similar one that runs
on standard clouds (OpenNebula, OpenStack and Amazon EC2 are supported) by
following the instructions in the Internals guide, section Creating a Nutshell image.

Running the Nutshell in VirtualBox

The easiest way to start the Nutshell is using VirtualBox.

As a lot of services run inside the Nutshell VM, it requires a significant amount
of resources. The minimum requirements for a system to be able to run the Nutshell
are as follows:

CPU: dual-core processor with hardware virtualization instructions
Memory: at least 6 GM of RAM (from which 3 GB should be allocated to the VM)
HDD: at least 30 GB of available space

The recommended system requirements for optimal performance:

CPU: Intel i7 processor or equivalent
Memory: at least 8 GB of RAM (from which 4 GB should be allocated to the VM)
HDD: Solid State Drive (SSD) with at least 30 GB of available space

Warning

It is highly advised to run the Nutshell on a system that meets the recommended
system requirements, or else the its performance may be severely impacted. For
systems that do not meet the recommended requirements (but still meet the minimum
requirements), a very careful split of the resources between the VM and the host
system needs to be performed.

	Make sure that hardware virtualization extensions are activated in your
computer’s BIOS. The procedure for activating them is highly dependent on
your computer’s manufacturer and model. Some general instructions can be found
here:

https://goo.gl/ZGxK9Z

	If you haven’t done this already, create a host-only network in VirtualBox.
This is needed in order to allow access to the Nutshell VM and to the applications
deployed in it from your host machine. To do so from the VirtualBox GUI, go to:
File > Preferences > Network > Host-only Networks. Check if there
is already a host-only network configured (usually called vboxnet0). If not,
add one by clicking on the Add host-only network button.

	Verify the settings of the host-only network. In the same window, select the
host-only network (vboxnet0) and press the Edit host-only network button.
In the Adapter tab, make sure that the following fields have these values:

IPv4 address: 192.168.56.1
IPv4 Network Mask: 255.255.255.0

and in the DHCP Server tab:

Enable Server is checked
Server Address: 192.168.56.100
Server Mask: 255.255.255.0
Lower Address Bound: 192.168.56.101
Upper Address Bound: 192.168.56.254

You can also use other values than the defaults presented above. In this case,
note that you will also need to adjust the IP address range allocated by
OpenStack to the containers to match your settings. You can do this by following
the instructions from the following section of the User guide:
Changing the IP address space used by the Nutshell.

	Import the Nutshell appliance using the menu File > Import Appliance, or by
simply double-clicking the .ova file in your file manager.

Warning

Make sure you have enough free space on your hard drive before attempting this
step as importing the appliance will extract the VM’s hard disk image from the
.ova archive, which occupies around 21 GB of hard disk space. Creating snapshots
of the Nutshell VM will also require additional space, so for optimal operation,
the recommended free space that should be available before importing the VM is
30 GB.

	Once the Nutshell has been imported, you may adjust the amount of memory and
the number of CPUs you want to dedicate to it by clicking on the Nutshell VM,
then following the menu: Settings > System > Motherboard / Processor.
We recommend allocating at least 3 GB of RAM for the Nutshell to function properly
(4 GB is recommended). Make sure that enough memory remains for the host system to
operate properly and never allocate more CPUs than what is available in your host
computer.

	It is also a very good idea to create a snapshot of the initial state of the
Nutshell VM, immediately after it was imported. This allows the possibility to
quickly revert to the initial state without importing the VM again, when something
goes wrong.

For more information regarding the usage of the Nutshell please consult the
ConPaaS in a VirtualBox Nutshell section in the User guide.

ConPaaS on Raspberry PI

ConPaaS on Raspberry PI is an extension to the ConPaaS project which uses one (or more)
Raspberry PI(s) 2 Model B to create a cloud for deploying applications. Each Raspberry PI is
configured as an OpenStack compute node (using LXC containers), running only the minimal
number of OpenStack services required on such a node (nova-compute and cinder-volume).
All the other OpenStack services, such as Glance, Keystone, Horizon etc., are moved outside
of the PI, on a more powerful machine configured as an OpenStack controller node. The ConPaaS
Director and both clients (command line and web frontend) also run on the controller node.

To ease the deployment of the system, we provide an image containing the raw contents of
the Raspberry PI’s SD card, along with a VirtualBox VM image (in the Open Virtualization
Archive format) that contains the controller node and can be deployed on any machine
connected to the same local network as the Raspberry PI(s). So, for a minimal working setup,
you will need at least one Raspberry PI 2 Model B (equipped with a 32 GB SD card) and one
laptop/desktop computer (with VirtualBox installed) that will host the backend VM. The two
have to be connected to the same local network which, in the default configuration, uses IPs
in the 172.16.0.0/24 range.

The two images can be downloaded from the following links:

	RPI’s SD card image (4.7 GB):

	
http://www.conpaas.eu/dl/ConPaaS-RPI/ConPaaS-RPI-SDCard-32G.img.tar.gz

MD5: b49a33dac4c6bdba9417b4feef1cd2aa

	VirtualBox VM containing the backend server (7.4 GB):

	
http://www.conpaas.eu/dl/ConPaaS-RPI/ConPaaS-RPI-Backend-VM.ova

MD5: 0e6022423b3f940c73204320a5f4f669

Warning

It is always a good idea to check the integrity of a downloaded image before continuing
with the next steps, as a corrupted image can lead to unexpected behaviour. You can do
this by comparing its MD5 hash with the ones shown above. To obtain the MD5 hash, you
can use the md5sum command.

Installing the image on the Raspberry PI

You need to write the image to the Raspberry PI’s SD card on a different machine (equipped
with an SD card reader) and then move the SD card back into the Raspberry PI.

Download and decompress the image, then write it to the SD card using the dd utility.
You can follow the official instructions from the RaspberryPi.org website:

	Linux:

	https://www.raspberrypi.org/documentation/installation/installing-images/linux.md

	MacOS:

	https://www.raspberrypi.org/documentation/installation/installing-images/mac.md

Warning

Decompressing the image will result in a 32 GB file (the raw SD card image), so please
make sure that you have enough free space before attempting this step.

Warning

Before writing the image, please make sure that the SD card has a capacity of at least
31998345216 bytes.

The image was designed to fit the majority of the 32 GB SD cards, as the actual size varies
between manufacturers. As a result, its size may be a little lower than the actual size of
your card, leaving some unused space near the end of the card. A lot more unused space
remains if a bigger SD card (64 GB) is used. To recover this wasted space, you may adjust
the partitions by moving the swap partition near the end of the card and expanding the main
ext4 partition.

Warning

If you adjust the partitions, please make sure that the beginning of every partition
remains aligned on a 4 MB boundary (the usual size of the SD card’s erase block) or else
performance may be negatively affected.

Deploying the Backend VM

Download the .ova file and import it into VirtualBox. In a graphical environment, you
can usually do this by double-clicking the .ova file.

Adjust the resources allocated to the VM. Although the default settings use a pretty
generous amount of resources (4 CPUs and 4 GB of RAM), reducing this to a less powerful
configuration should work fine (for example 1 CPU and 2 GB of RAM).

Another very important configuration is setting the VM’s network interfaces. Two interfaces
should be present: the first one (called eth0 inside the VM) should be configured as the
NAT type to allow Internet access to the VM. The second interface (eth1 inside the VM)
should be bridged to an adapter connected to the same local network as the Raspberry PI,
so in the VM’s properties select Bridged adapter and choose the interface to which the
Raspberry PIs are connected.

For more information regarding the usage of ConPaaS on Raspberry PI, please consult the
ConPaaS on Raspberry PI section in the user guide.

 Copyright 2012-2015, Contrail and HARNESS consortia.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ConPaaS 1.5.1 documentation

User Guide

ConPaaS currently contains the following services:

	Two Web hosting services respectively specialized for hosting PHP
and JSP applications;

	MySQL offering a multi-master replicated load-balanced database service;

	Scalarix service offering a scalable in-memory key-value store;

	MapReduce service providing the well-known high-performance
computation framework;

	TaskFarming service high-performance batch processing;

	Selenium service for functional testing of web applications;

	XtreemFS service offering a distributed and replicated file
system;

	HTC service providing a throughput-oriented scheduler for bags of tasks
submitted on demand;

	Generic service allowing the execution of arbitrary applications.

ConPaaS applications can be composed of any number of services. For
example, a bio-informatics application may make use of a PHP and a MySQL
service to host a Web-based frontend, and link this frontend to a
MapReduce backend service for conducting high-performance genomic
computations on demand.

Usage overview

Web-based interface

Most operations in ConPaaS can be done using the ConPaaS frontend, which
gives a Web-based interface to the system. The front-end allows users to
register (directly with ConPaaS or through an external Identification
Provider at Contrail), create services, upload code and data to the
services, and configure each service.

	The Dashboard page displays the list of services currently active in
the system.

	Each service comes with a separate page which allows one to configure
it, upload code and data, and scale it up and down.

Command line interfaces

All the functionalities of the frontend are also available using a
command-line interface. This allows one to script commands for ConPaaS.
The command-line interface also features additional advanced
functionalities, which are not available using the front-end.
(The use of external Identification Provider at Contrail is not yet
available from the command-line interface.)

It exists two command line clients: cpsclient.py and cps-tools.

	cpsclient.py

	Installation and configuration:
see Installing and configuring cpsclient.py.

Command arguments:

$ cpsclient.py usage

Available service types:

$ cpsclient.py available

Service command specific arguments:

$ cpsclient.py usage <service_type>

Create a service:

$ cpsclient.py create <service_type>

List services:

$ cpsclient.py list

	cps-tools

	
	Installation and configuration:

	see Installing and configuring cps-tools.

Command arguments:

$ cps-tools --help

Available service types:

$ cps-tools service get_types
$ cps-service get-types

Service command specific arguments:

$ cps-tools <service_type> --help
$ cps-<service_type> --help

Create a service:

$ cps-tools service create <service_type>
$ cps-tools <service_type> create
$ cps-<service_type> create

List services:

$ cps-tools service list
$ cps-service list

List applications:

$ cps-tools application list
$ cps-application list

List clouds:

$ cps-tools cloud list
$ cps-cloud list

Controlling services using the front-end

The ConPaaS front-end provides a simple and intuitive interface for
controlling services. We discuss here the features that are common to
all services, and refer to the next sections for service-specific
functionality.

	Create a service.

	Click on “create new service”, then select the service you want to
create. This operation starts a new “Manager” virtual machine
instance. The manager is in charge of taking care of the service,
but it does not host applications itself. Other instances in charge
of running the actual application are called “agent” instances.

	Start a service.

	Click on “start”, this will create a new virtual machine which can
host applications, depending on the type of service.

	Rename the service.

	By default all new services are named “New service”. To give a
meaningful name to a service, click on this name in the
service-specific page and enter a new name.

	Check the list of virtual instances.

	A service can run using one or more virtual machine instances. The
service-specific page shows the list of instances, their respective
IP addresses, and the role each instance is currently having in the
service. Certain services use a single role for all instances, while
other services specialize different instances to take different
roles. For example, the PHP Web hosting service distinguishes three
roles: load balancers, web servers, and PHP servers.

	Scale the service up and down.

	When a service is started it uses a single “agent” instance. To add
more capacity, or to later reduce capacity you can vary the number
of instances used by the service. Click the numbers below the list
of instances to request adding or removing servers. The system
reconfigures itself without any service interruption.

	Stop the service.

	When you do not need to run the application any more, click “stop”
to stop the service. This stops all instances except the manager
which keeps on running.

	Terminate the service.

	Click “terminate” to terminate the service. At this point all the
state of the service manager will be lost.

Controlling services using the command-line interfaces

Command-line interfaces allow one to control services without using the
graphical interface. The command-line interfaces also offer additional
functionalities for advanced usage of the services.
See Installing and configuring cpsclient.py to install it.

List all options of the command-line tool.

$ cpsclient.py help

Create a service.

$ cpsclient.py create php

List available services.

$ cpsclient.py list

List service-specific options.

in this example the id of our service is 1
$ cpsclient.py usage 1

Scale the service up and down.

$ cpsclient.py usage 1
$ cpsclient.py add_nodes 1 1 1 0
$ cpsclient.py remove_nodes 1 1 1 0

The credit system

In Cloud computing, resources come at a cost. ConPaaS reflects this
reality in the form of a credit system. Each user is given a number of
credits that she can use as she wishes. One credit corresponds to one
hour of execution of one virtual machine. The number of available
credits is always mentioned in the top-right corner of the front-end.
Once credits are exhausted, your running instances will be stopped and
you will not be able to use the system until the administrator decides
to give additional credit.

Note that every service consumes credit, even if it is in “stopped”
state. The reason is that stopped services still have one “manager”
instance running. To stop using credits you must completely terminate
your services.

Tutorial: hosting WordPress in ConPaaS

This short tutorial illustrates the way to use ConPaaS to install and
host WordPress (http://www.wordpress.org), a well-known third-party Web
application. WordPress is implemented in PHP using a MySQL database so
we will need a PHP and a MySQL service in ConPaaS.

	Open the ConPaaS front-end in your Web browser and log in. If
necessary, create yourself a user account and make sure that you have
at least 5 credits. Your credits are always shown in the top-right
corner of the front-end. One credit corresponds to one hour of
execution of one virtual machine instance.

	Create a MySQL service, start it, reset its password. Copy the IP
address of the master node somewhere, we will need it in step 5.

	Create a PHP service, start it.

	Download a WordPress tarball from http://www.wordpress.org, and
expand it in your computer.

	Copy file wordpress/wp-config-sample.php to
wordpress/wp-config.php and edit the DB_NAME, DB_USER,
DB_PASSWORD and DB_HOST variables to point to the database
service. You can choose any database name for the DB_NAME
variable as long as it does not contain any special character. We
will reuse the same name in step 7.

	Rebuild a tarball of the directory such that it will expand in the
current directory rather than in a wordpress subdirectory. Upload
this tarball to the PHP service, and make the new version active.

	Connect to the database using the command proposed by the frontend.
Create a database of the same name as in step 5 using command
“CREATE DATABASE databasename;“

	Open the page of the PHP service, and click “access application.”
Your browser will display nothing because the application is not
fully installed yet. Visit the same site at URL
http://xxx.yyy.zzz.ttt/wp-admin/install.php and fill in the
requested information (site name etc).

	That’s it! The system works, and can be scaled up and down.

Note that, for this simple example, the “file upload” functionality of WordPress will not work if
you scale the system up. This is because WordPress stores files in the
local file system of the PHP server where the upload has been processed.
If a subsequent request for this file is processed by another PHP server
then the file will not be found.
The solution to that issue consists in using the shared file-system
service called XtreemFS to store the uploaded files.

The PHP Web hosting service

The PHP Web hosting service is dedicated to hosting Web applications
written in PHP. It can also host static Web content.

Uploading application code

PHP applications can be uploaded as an archive or via the Git version
control system.

Archives can be either in the tar, zip, gzip or bzip2 format.

Warning

the archive must expand in the current directory rather than in a
subdirectory.

The service does not immediately use new applications when
they are uploaded. The frontend shows the list of versions that have
been uploaded; choose one version and click “set active” to activate
it.

Note that the frontend only allows uploading archives smaller than a
certain size. To upload large archives, you must use the command-line
tools or Git.

The following example illustrates how to upload an archive to the
service with id 1 using the cpsclient.py command line tool:

$ cpsclient.py upload_code 1 path/to/archive.zip

To enable Git-based code uploads you first need to upload your SSH
public key. This can be done either using the command line tool:

$ cpsclient.py upload_key serviceid filename

An SSH public key can also be uploaded using the ConPaaS frontend by
choosing the “checking out repository” option in the “Code management”
section of your PHP service. Once the key is uploaded the frontend will
show the git command to be executed in order to obtain a copy of the
repository. The repository itself can then be used as usual. A new
version of your application can be uploaded with git push.

user@host:~/code$ git add index.php
user@host:~/code$ git commit -am "New index.php version"
user@host:~/code$ git push origin master

Access the application

The frontend gives a link to the running application. This URL will
remain valid as long as you do not stop the service.

Using PHP sessions

PHP normally stores session state in its main memory. When scaling up
the PHP service, this creates problems because multiple PHP servers
running in different VM instances cannot share their memory. To support
PHP sessions the PHP service features a key-value store where session
states can be transparently stored. To overwrite PHP session functions
such that they make use of the shared key-value store, the PHP service
includes a standard “phpsession.php” file at the beginning of every .php
file of your application that uses sessions, i.e. in which function
session_start() is encountered. This file overwrites the session
handlers using the session_set_save_handler() function.

This modification is transparent to your application so no particular
action is necessary to use PHP sessions in ConPaaS.

Debug mode

By default the PHP service does not display anything in case PHP errors
occur while executing the application. This setting is useful for
production, when you do not want to reveal internal information to
external users. While developing an application it is however useful to
let PHP display errors.

$ cpsclient.py toggle_debug serviceid

Adding and removing nodes

Like all ConPaaS services, the PHP service is elastic:
service owner can add or remove nodes.
The PHP service (like the Java service) belongs to a class of web services
that deals with three types of nodes:

	proxy

	a node that is used as an entry point for the web application and as a load balancer

	web

	a node that deals with static pages only

	backend

	a node that deals with PHP requests only

When a proxy node receives a request, it redirects it to
a web node if it is a request for a static page,
or a backend node if it is a request for a PHP page.

If your PHP service has a slow response time, increase the number of backend nodes.

On command line, you can use cpsclient.py to add nodes.
The add_nodes sub-command takes 4 arguments in that order: the PHP service identifier,
the number of backend nodes, the number of web nodes and the number of proxy nodes to add.
It also take a 5th optional argument that specify in which cloud nodes will be created.
For example, adding two backend nodes to PHP service id 1:

$ cpsclient.py add_nodes 1 2 0 0

Adding one backend node and one web node in a cloud provider called mycloud:

$ cpsclient.py add_nodes 1 1 1 0 mycloud

You can also remove nodes using cpsclient.py.
For example, the following command will remove one backend node:

$ cpsclient.py remove_nodes 1 1 0 0

Warning

Initially, an instance of each node is running on one single VM.
Then, when adding a backend node, ConPaaS will move the backend
node running on the first VM to a new VM.
So, actually, it will not add a new backend node the first time.
Requesting for one more backend node will create a new VM that will
run an additional backend.

Autoscaling

One of the worries of a service owner is the trade-off between the performance
of the service and the cost of running it. The service owner can add nodes to
improve the performance of the service, which will have more nodes to balance the
load, or remove nodes from the service to decrease the cost per hour, but
increase the load per node.

Adding and removing nodes as described above is interactive: the service owner
has to run a command line or push some buttons on the web frontend GUI. However,
the service owner is not always watching for the performance of his Web service.

Autoscaling for the PHP service will add or remove nodes according to the load
on the Web service. If the load on nodes running a Web service exceeds a given
threshold and the autoscaling mechanism estimates that it will last, then the
autoscaling mechanism will automatically add nodes for the service to balance
the load. If the load on nodes running a Web service is low and the autoscaling
mechanism estimates that it will last and that removing some nodes will not
increase the load on nodes beyond the given threshold, then the autoscaling
mechanism will automatically remove nodes from the service to decrease the cost
per hour of the service.

Autoscaling for the PHP service will also take into account the different kind
of nodes that the cloud providers propose. They usually propose small instances,
middle range instances and large instances. So, the autoscaling mechanism will
select different kind of nodes depending on the service owner strategy choice.

To enable autoscaling for the PHP service, run the command:

$ cpsclient.py on_autoscaling <sid> <adapt_interval> <response_time_threshold> <strategy>

	where:

	
	<sid> is the service identifier

	<adapt_interval> is the time in minutes between automatic adaptation point

	<response_time_threshold> is the desired response time in milliseconds

	<strategy> is the policy used to select instance type when adding nodes, it must be one of:
	“low”: will always select the smallest (and cheapest) instance proposed by the cloud provider

	“medium_down”

	“medium”

	“medium_up”

	“high”

For example:

$ cpsclient.py on_autoscaling 1 5 2000 low

enables autoscaling for PHP service 1, with an adaptation every 5 minutes, a
response time threshold of 2000 milliseconds (2 seconds), and using the strategy
low. This means that every 5 minutes, autoscaling will determine if it will add
nodes, remove nodes, or do nothing, by looking at the history of the Web service
response time and comparing it to the desired 2000 milliseconds. According the
specified “low” strategy, if it decides to create nodes, it will always select the
smallest instance from the cloud provider.

Any time, the service owner may re-run the “on_autoscaling” command to tune autoscaling with different parameters:

$ cpsclient.py on_autoscaling 1 10 1500 low

this command updates the previous call to “on_autoscaling” and changes the
adaptation interval to 10 minutes, and setting a lower threshold to 15000
milliseconds.

Autoscaling may be disabled by running command:

$ cpsclient.py off_autoscaling <sid>

The Java Web hosting service

The Java Web hosting service is dedicated to hosting Web applications
written in Java using JSP or servlets. It can also host static Web
content.

Uploading application code

Applications in the Java Web hosting service can be uploaded in the form
of a war file or via the Git version control system. The service
does not immediately use new applications when they are uploaded. The
frontend shows the list of versions that have been uploaded; choose one
version and click “set active” to activate it.

Note that the frontend only allows uploading archives smaller than a
certain size. To upload large archives, you must use the command-line
tools or Git.

The following example illustrates how to upload an archive with the
cpsclient.py command line tool:

$ cpsclient.py upload_code serviceid archivename

To upload new versions of your application via Git, please refer to
section Uploading application code.

Access the application

The frontend gives a link to the running application. This URL will
remain valid as long as you do not stop the service.

The MySQL Database Service

The MySQL service is a true multi-master database cluster based on
MySQL-5.5 and the Galera synchronous replication system. It is an
easy-to-use, high-availability solution, which provides high system
uptime, no data loss and scalability for future growth. It provides
exactly the same look and feel as a regular MySQL database.

Summarizing, its advanced features are:

	Synchronous replication

	Active-active multi-master topology

	Read and write to any cluster node

	Automatic membership control, failed nodes drop from the cluster

	Automatic node joining

	True parallel replication, on row level

	Both read and write scalability

	Direct client connections, native MySQL look & feel

The Database Nodes and Load Balancer Nodes

The MySQL service offers the capability to instantiate multiple
instances of database nodes, which can be used to increase the
throughput and to improve features of fault tolerance through
replication. The multi-master structure allows any database node to
process incoming updates, because the replication system is
responsible for propagating the data modifications made by each member
to the rest of the group and resolving any conflicts that might arise
between concurrent changes made by different members. These features
can be used to increase the throughput of the cluster.

To obtain the better performances from a cluster, it is a best
practice to use it in balanced fashion, so that each node has
approximatively the same load of the others. To achieve this, the
service allows users to allocate special load balancer nodes
(glb_nodes) which implement load balancing. Load balancer nodes
are designed to receive all incoming database queries and
automatically schedule them between the database nodes, making sure
they all process equivalent workload.

Resetting the User Password

When a MySQL service is started, a new user “mysqldb” is created
with a randomly-generated password. To gain access to the database you
must first reset this password. Click “Reset Password” in the
front-end, and choose the new password.

Note that the user password is not kept by the ConPaaS frontend. If
you forget the password the only thing you can do is reset the
password again to a new value.

Accessing the database

The frontend provides the command-line to access the database cluster.
Copy-paste this command in a terminal. You will be asked for the user
password, after which you can use the database as you wish. Note
that, in case the service has instantiated a load balancer, the command
refers to the load balancer IP and its specific port, so the load
balancer can receive all the queries and distributes them across the
ordinary nodes. Note, again, that the mysqldb user has extended
privileges. It can create new databases, new users etc.

Uploading a Database Dump

The ConPaaS frontend allows users to easily upload database dumps to a
MySQL service. Note that this functionality is restricted to dumps of
a relatively small size. To upload larger dumps you can always use the
regular mysql command for this:

$ mysql mysql-ip-address -u mysqldb -p < dumpfile.sql

Performance Monitoring

The MySQL service interface provides a sophisticated mechanism to monitor the
service. The user interface, in the frontend, shows a monitoring control,
called “Performance Monitor”, that can be used to monitor a large cluster’s
behaviour. It interacts with “Ganglia”, “Galera” and “MySQL” to obtain various
kinds of information. Thus, “Performance Monitor” provides a solution for
maintaining control and visibility of all nodes, with a monitoring dynamic data
every few seconds.

It consists of three main components.

	“Cluster usage” monitors the number of incoming SQL queries. This
will let you know in advance about any overload of the resources.
You will also be able to spot usage trends over time so as to get
insights on when you need to add new nodes, serving the MySQL
database.

	The second control highlights the cluster’s performance, with a
table detailing the load, memory usage, CPU utilization, and network
traffic for each node of the cluster. Users can use these
informations in order to detect problems in their applications. The
table displays the resource utilization across all nodes, and
highlight the parameters which suggest an abnormality. For example
if CPU utilization is high, or free memory is very low this is shown
clearly. This may mean that processes on this node will start to
slow down, and that it may be time to add additional nodes to the
cluster. On the other hand this may indicate a malfunction of the
specific node.

In this latter case, in a multimaster system, it may be a good idea to
kill the node and replace it with another one. The monitoring
system also simplifies this kind of operations through buttons which
allow to directly kill a specific node. Keep in mind, however,
that high CPU utilization may not necessarily affect application
performance.

	“Galera Mean Misalignment” draws a real-time measure of the mean
misalignment across the nodes. This information is derived by
Galera metrics about the average length of the receive queue since
the most recent status query. If this value is noticeably larger
than zero, the nodes are likely to be overloaded, and cannot apply
the writesets as quickly as they arrive, resulting in replication
throttling.

The Scalarix key-value store service

The Scalarix service provides an in-memory key-value store. It is highly
scalable and fault-tolerant. This service deviates slightly from the
organization of other services in that it does not have a separate
manager virtual machine instance. Scalarix is fully symmetric so any
Scalarix node can act as a service manager.

Accessing the key-value store

Clients of the Scalarix service need the IP address of (at least) one
node to connect to the service. Copy-paste the address of any of the
running instances in the client. A good choice is the first instance in
the list: when scaling the service up and down, other instances may be
created or removed. The first instance will however remain across these
reconfigurations, until the service is terminated.

Managing the key-value store

Scalarix provides its own Web-based interface to monitor the state and
performance of the key-value store, manually add or query key-value
pairs, etc. For convenience reasons the ConPaaS front-end provides a
link to this interface.

The MapReduce service

The MapReduce service provides the well-known Apache Hadoop framework in
ConPaaS. Once the MapReduce service is created and started, the
front-end provides useful links to the Hadoop namenode, the job tracker,
and to a graphical interface which allows to upload/download data
to/from the service and issue MapReduce jobs.

Warning

This service requires virtual machines with at least 384 MB of RAM to
function properly.

The TaskFarming service

The TaskFarming service provides a bag of tasks scheduler for ConPaaS. The
user needs to provide a list of independent tasks to be executed on the
cloud and a file system location where the tasks can read input data
and/or write output data to it. The service first enters a sampling
phase, where its agents sample the runtime of the given tasks on
different cloud instances. The service then based on the sampled
runtimes, provides the user with a list of schedules. Schedules are
presented in a graph and the user can choose between cost/makespan of
different schedules for the given set of tasks. After the choice is made,
the service enters the execution phase and completes the execution of
the rest of the tasks according to the user’s choice.

Preparing the ConPaaS services image

By default, the TaskFarming service can execute the user code that is
supported by the default ConPaaS services image. If user’s tasks depend
on specific libraries and/or applications that do not ship with the
default ConPaaS services image, the user needs to configure the ConPaaS
services image accordingly and use the customized image ID in ConPaaS
configuration files.

The bag of tasks file

The bag of tasks file is a simple plain text file that contains the list
of tasks along with their arguments to be executed. The tasks are
separated by new lines. This file needs to be uploaded to the service,
before the service can start sampling. Below is an example of a simple
bag of tasks file containing three tasks:

/bin/sleep 1 && echo "slept for 1 seconds" >> /mnt/xtreemfs/log
/bin/sleep 2 && echo "slept for 2 seconds" >> /mnt/xtreemfs/log
/bin/sleep 3 && echo "slept for 3 seconds" >> /mnt/xtreemfs/log

The minimum number of tasks required by the service to start sampling is
depending on the number of tasks itself, but a bag with more than thirty
tasks is large enough.

The filesystem location

The TaskFarming service uses XtreemFS for data input/output. The actual task
code can also reside in the XtreemFS. The user can optionally provide an
XtreemFS location which is then mounted on TaskFarming agents.

The demo mode

With large bags of tasks and/or with long running tasks, the TaskFarming
service can take a long time to execute the given bag. The service
provides its users with a progress bar and reports the amount of money
spent so far. The TaskFarming service also provides a “demo” mode where the
users can try the service with custom bags without spending time and
money.

The XtreemFS service

The XtreemFS service provides POSIX compatible storage for ConPaaS. Users can
create volumes that can be mounted remotely or used by other ConPaaS services,
or inside applications. An XtreemFS instance consists of multiple DIR, MRC and
OSD servers. The OSDs contain the actual storage, while the DIR is a directory
service and the MRC contains meta data. By default, one instance of each runs
inside the first agent virtual machine and the service can be scaled up and
down by adding and removing additional OSD nodes. The XtreemFS documentation
can be found at http://xtreemfs.org/userguide.php.

SSL Certificates

The XtreemFS service uses SSL certificates for authorization and authentication.
There are two types of certificates, user-certificates and client-certificates.
Both certificates can additionally be flagged as administrator certificates which
allows performing administrative file-systems tasks when using them to access
XtreemFS. Certificates are only valid for the service that was used to create them.
The generated certificates are in P12-format.

The difference between client- and user-certificates is how POSIX users and
groups are handled when accessing volumes and their content. Client-certificates
take the user and group with whom an XtreemFS command is called, or a mounted XtreemFS
volume is accessed. So multiple users might share a single client-certificate.
On the other hand, user-certificates contain a user and group inside the certificate.
So usually, each user has her personal user-certificate. Both kinds of certificate can
be used in parallel. Client-certificates are less secure, since the user and group with
whom files are accessed can be arbitrarily changed if the mounting user has local
superuser rights. So client-certificates should only be used in trusted environments.

Using the command line client, certificates can be created like this, where <adminflag>
can be “true”, “yes”, or “1” to grant administrator rights:

$ cpsclient.py get_client_cert <service-id> <passphrase> <adminflag> <filename.p12>
$ cpsclient.py get_user_cert <service-id> <user> <group> <passphrase> <adminflag> <filename.p12>

Accessing volumes directly

Once a volume has been created, it can be directly mounted on a remote site by
using the mount.xtreemfs command. A mounted volume can be used like any local
POSIX-compatible filesystem. You need a certificate for mounting (see last section).
The command looks like this, where <address> is the IP of an agent running
an XtreemFS directory service (usually the first agent):

$ mount.xtreemfs <address>/<volume> <mount-point> --pkcs12-file-path <filename.p12> --pkcs12-passphrase <passphrase>

The volume can be unmounted with the following command:

$ fusermount -u <mount-point>

Please refer to the XtreemFS user guide (http://xtreemfs.org/userguide.php) for further details.

Policies

Different aspects of XtreemFS (e.g. replica- and OSD-selection) can be
customised by setting certain policies. Those policies can be set via the
ConPaaS command line client (recommended) or directly via xtfsutil (see the
XtreemFS user guide). The commands are like follows, were <policy_type> is
“osd_sel”, “replica_sel”, or “replication”:

$ cpsclient.py list_policies <service-id> <policy_type>
$ cpsclient.py set_policy <service-id> <policy_type> <volume> <policy> [factor]

Persistency

If the XtreemFS service is shut down, all its data is permanently lost. If
persistency beyond the service runtime is needed, the XtreemFS service can be
moved into a snapshot by using the download_manifest operation of the command
line client.

Warning

This operation will automatically shut down the service and its application.

The whole application containing the service and all of its stored volumes
with their data can be moved back into a running ConPaaS application by using
the manifest operation.

The commands are:

$ cpsclient.py download_manifest <application-id> > <filename>
$ cpsclient.py manifest <filename>

Important notes

When a service is scaled down by removing OSDs, the data of those OSDs is
migrated to the remaining OSDs. Always make sure there is enough free space
for this operation to succeed. Otherwise you risk data loss.
The download_manifest operation of the XtreemFS service will also shut the
service down. This behaviour might differ from other ConPaaS services, but is
necessary to avoid copying the whole filesystem (which would be a very
expensive operation). This might change in future releases.

The HTC service

The HTC service provides a throughput-oriented scheduler for bags of tasks
submitted on demand for ConPaaS. An initial bag of tasks is sampled generating a
throughput = f(cost) function. The user is allowed at any point, including
upon new tasks submission, to request the latest throughput = f(cost) function
and insert his target throughput. After the first bag is sampled and submitted
for execution the user is allowed to add tasks to the job with the
corresponding identifier. The user is allowed at any point, including upon new
tasks submission, to request the latest throughput = f(cost) function and adjust
his target throughput. All tasks that are added are immediately submitted for
execution using the latest configuration requested by the user, corresponding
to the target throughput.

Available commands

start service_id: prompts the user to specify a mode (’real’ or ’demo’) and
type (’batch’, ’online’ or ’workflow’) for the service. Starts the service
under the selected context and initializes all the internal data structures for
running the service.

stop service_id: stops and releases all running VMs that exist in the pool
of workers regardless of the tasks running.

terminate service_id: stops and releases the manager VM along with the
running algorithm and existing data structures.

create_worker service_id type count: adds count workers to the pool returns
the worker_ids. The worker is added to the table. The manager starts the worker
on a VM requested of the selected type.

remove_worker service_id worker_id: removes a worker from the condor pool.
The worker_id is removed from the table.

create_job service_id .bot_file: creates a new job on the manager and
returns a job_id. It uploads the .bot_file on the manager and assign a queue to
the job which will contain the path of all .bot_files submitted to this job_id.

sample service_id job_id: samples the job on all available machine types in
the cloud according to the HTC model.

throughput service_id: prompts the user to select a target throughput
within [0,TMAX] and returns the cost for that throughput.

configuration service_id: prompts the user to select a target throughput
within [0,TMAX] and returns the machine configuration required for that
throughput. At this point the user can manually create the pool of workers
using create_worker and remove_worker.

select service_id: prompts the user to select a target throughput within
[0,TMAX] and creates the pool of workers needed to obtain that throughput.

submit service_id job_id: submits all the bags in this job_id for execution
with the current configuration of workers.

add service_id job_id .bot_file: submits a .bot_file for execution on
demand. The bag is executed with the existing configuration.

The Generic service

The Generic service facilitates the deployment of arbitrary server-side
applications in the cloud. A Generic service may contain multiple Generic
agents, each of them running an instance of the application.

The users can control the application’s life cycle by installing or removing
code versions, running or interrupting the execution of the application or
checking the status of each of the Generic agents. New Generic agents can be
added or old ones removed at any time, based on the needs of the application.
Moreover, additional storage volumes can be attached to agents if additional
storage space is needed.

To package an application for the Generic service, the user has to provide
simple scripts that guide the process of installing, running, scaling up
and down, interrupting or removing an application to/form a Generic agent.

Agent roles

Generic agents assume two roles: the first agent started is always a “master”
and all the other agents assume the role of regular “nodes”. This distinction
is purely informational: there is no real difference between the two agent
types, both run the same version of the application’s code and are treated by
the ConPaaS system in exactly the same way. This distinction may be useful,
however, when implementing some distributed algorithms in which one node must
assume a specific role, such as leader or coordinator.

It is guaranteed that, as long as the Generic service is running, there will
always be exactly one agent with the “master” role and the same agent will
assume this role until the Generic service is stopped. Adding or removing nodes
will only affect the number of regular nodes.

Packaging an application

To package an application for the Generic service, one needs to write various
scripts which are automatically called inside agents whenever the corresponding
events happen. The following scripts may be used:

init.sh – called whenever a new code version is activated. The script is
automatically called for each agent as soon as the corresponding code version
becomes active. The script should contain commands that initialize the
environment and prepare it for the execution of the application. It is guaranteed
that this script is is called before any other scripts in a specific code version.

notify.sh – called whenever a new agent is added or removed. The script
is automatically called whenever a new agent is added and becomes active or
is removed from the Generic service. The script may configure the application
to take into account the addition or removal of a specific node or group of
nodes. In order to retrieve the updated list of nodes along with their IP
addresses, the script may check the content of the following file, which always
contains the current list of nodes in JSON format: /var/cache/cpsagent/agents.json.
Note that when multiple nodes are added or removed in a single operation, the
script will be called only once for each of the remaining nodes.

run.sh – called whenever the user requests to start the application.
The script should start executing the application and after the execution
completes, it may return an error code that will be shown to the user. It is
guaranteed that the init.sh script already finished execution before run.sh
is called.

interrupt.sh – called whenever the user requests that the application is
interrupted. The script should notify the application that the interruption was
requested and allow it to gracefully terminate execution. It is guaranteed that
interrupt.sh is only called when the application is actually running.

cleanup.sh – called whenever the user requests that the application’s code
is removed from the agent. The script should remove any files that the
application generated during execution and are not longer needed. After the
script completes execution, a new version of the code may be activated and the
init.sh script called again, so the agent needs to be reverted to a clean
state.

To create an application’s package, all the previous scripts must be added to
an archive in the tar, zip, gzip or bzip2 format. If there is
no need to execute any tasks when a specific type of event happens, some of
the previous scripts may be left empty or may even be missing completely from
the application’s archive.

Warning

the archive must expand in the current directory rather than in a subdirectory.

The application’s binaries can be included in the archive only if they are small
enough.

Warning

the archive is stored on the service manager instance and its contents are extracted in each
agent’s root file system which usually has a very limited amount of free
space (usually a little more than 100 MB), so application’s binaries can
be included only if they are really small (a few MBs).

A better idea would be to attach an additional storage volume where the init.sh
script can download the application’s binaries from an external location for each
Generic agent. This will render the archive very small as it only contains a few
scripts. This is the recommended approach.

Uploading the archive

An application’s package can be uploaded to the Generic service either as an
archive or via the Git version control system. Either way, the code does not
immediately become active and must be activated first.

Using the web frontend, the “Code management” section offers the possibility
to upload a new archive to the Generic service. After the upload succeeds,
the interface shows the list of versions that have been uploaded; choose one
version and click “set active” to activate it. Note that the frontend only
allows uploading archives smaller than a certain size. To upload large archives,
you must use the command-line tools or Git. The web frontend also allows
downloading or deleting a specific code version. Note that the active code
version cannot be deleted.

Using the command-line interface, uploading and enabling a new code version
is just as simple. The following example illustrates how to upload and activate
an archive to the service with id 1 using the cpsclient.py command line tool:

$ cpsclient.py upload_code 1 test-code.tar.gz
Code version code-pw1LKs uploaded
$ cpsclient.py enable_code 1 code-pw1LKs
code-pw1LKs enabled
$ cpsclient.py list_uploads 1
current codeVersionId filename description
--
 * code-pw1LKs test-code.tar.gz
 code-default code-default.tar Initial version

To download a specific code version, the following command may be used:

$ cpsclient.py download_code <serviceid> <code-version>

The archive will be downloaded using the original name in the current directory.

Warning

if another file with the same name is present in the current directory,
it will be overwritten.

The command-line client also allows deleting a code version, with the exception
of the currently active version:

$ cpsclient.py delete_code <serviceid> <code-version>

It is a good idea to delete the code versions which are not needed anymore, as
all the available code versions are stored in the Generic manager’s file system,
which has a very limited amount of available space. In contrast to the manager,
the agents only store the active code version, which is replaced every time a new
version becomes active.

Uploading the code using git

As an alternative to uploading the application’s package as stated above, the
Generic service also supports uploading the package’s content using Git.

To enable Git-based code uploads, you first need to upload your SSH public key.
This can be done either using the web frontend, in the “Code management” section,
after selecting “checking out repository” or using the command-line client:

$ cpsclient.py upload_key <serviceid> <filename>

You can check that the key was successfully uploaded by listing the trusted
SSH keys:

$ cpsclient.py list_keys <serviceid>

Once the key is uploaded, the following command has to be executed in order to
obtain a copy of the repository:

$ git clone git@<generic-manager-ip>:code

The repository itself can then be used as usual. A new version of your
application can be uploaded with git push:

$ cd code
$ git add {init,notify,run,interrupt,cleanup}.sh
$ git commit -m "New code version"
$ git push origin master

The git push command will trigger the updating of the available code versions.
To activate the new code version, the same procedure as before must be followed.
Note that, when using the web frontend, you may need to refresh the page in
order to see the new code version.

To download a code version uploaded using Git, you must clone the repository
and checkout a specific commit. The version number represents the first part
of the commit hash, so you can use that as a parameter for the git checkout
command:

$ cpsclient.py list_uploads 1
current codeVersionId filename description

 git-7235de9 7235de9 Git upload
 * code-default code-default.tar Initial version
$ git clone git@192.168.56.10:code
$ cd code
$ git checkout 7235de9

Deleting a specific code version uploaded using Git is not possible.

Managing storage volumes

Storage volumes of arbitrary size can be attached to any Generic agent.
Note that, for some clouds such as Amazon EC2 and OpenStack, the volume
size must be a multiple of 1 GB. In this case, if the requested size does
not satisfy this constraint, it will be rounded up to the smallest size
multiple of 1 GB that is greater than the requested size.

The attach or detach operations are permitted only if there are no scripts
running inside the agents. This guarantees that a volume is never in use when
it is detached.

To create and attach a storage volume using the web frontend, you must click
the “+ add volume” link below the instance name of the agent that should have
this volume attached to. A small form will expand where you can enter the
volume name and the requested size. Note that the volume name must be unique,
or else the volume will not be created. The volume is created and attached
after pressing the “create volume” button. Depending on the cloud in use and
the volume size, this operation may take a little while. Additional volumes
can be attached later to the same agent if more storage space is needed.

The list of volumes attached to a specific agent is shown in the instance
view of the agent, right under the instance name. For each volume, the name
of the volume and the requested size is shown. To detach and delete a volume,
you can press the red X icon after the volume’s size.

Warning

after a volume is detached, all data contained within it is lost forever.

Using the command-line client, a volume can be created and attached to a
specific agent with the following command:

$ cpsclient.py create_volume <serviceid> <vol_name> <size> <agent_id>

Size must always be specified in MB. To find out the agent_id of a specific
instance, you may issue the following command:

$ cpsclient.py list_nodes <serviceid>

The list of all storage volumes can be retrieved with:

$ cpsclient.py list_volumes <serviceid>

This command detaches and deletes a storage volume:

$ cpsclient.py delete_volume <serviceid> <agent_id>

Controlling the application’s life cycle

A newly started Generic service contains only one agent with the role
“master”. As in the case of other ConPaaS services, nodes can be added
to the service (or removed from the service) at any point in time.

In the web frontend, new Generic nodes can be added by entering the number
of new nodes (in a small cell below the list of instances) and pressing
the “submit” button. Entering a negative number of nodes will lead to the
removal of the specified number of nodes.

On the command-line, nodes can be added with the following command:

$ cpsclient.py add_nodes <serviceid> <number_of_nodes>

Immediately after the new nodes are ready, the active code version is copied
to the new nodes and the init.sh script is executed in each of the new
nodes. All the other nodes which were already up before the execution of the
command will be notified about the addition of the new nodes to the service,
so notify.sh is executed in their case. The init.sh script is never
executed twice for the same agent and the same code version.

Nodes can be removed with:

$ cpsclient.py remove_nodes <serviceid> <number_of_nodes>

After the command completes and the specified number of nodes are terminated,
the notify.sh script is executed for all the remaining nodes to notify
them of the change.

The Generic service also offers an easy way to run the application on every
agent, interrupt a running application or cleanup the agents after the
execution is completed.

In the web frontend, the run, interrupt and cleanup buttons
are conveniently located on the top of the page, above the instances view.
Pressing such a button will execute the corresponding script in all the agents.
Above the buttons there is also a parameters field which allow the user to
specify parameters which will be forwarded to the script during the execution.

On the command line, the following commands may be used:

$ cpsclient.py run <serviceid> [parameters]
$ cpsclient.py interrupt <serviceid> [parameters]
$ cpsclient.py cleanup <serviceid> [parameters]

The parameters are optional and, if not present, will be replaced by an empty
list.

The run and cleanup commands cannot be issued if any scripts are
still running inside at least one agent. In this case, if it is not desired
to wait for them to complete execution, interrupt may be called first.

In turn, interrupt cannot be called if no scripts are running (there is
nothing to interrupt). The interrupt command will execute the interrupt.sh
script that tries to cleanly shut down the application. If the interrupt.sh
completes execution and the application is still running, the application will
be automatically killed. When interrupt.sh itself has to be
killed, the interrupt command can be issued again. In this case, it will
kill all the running scripts (including interrupt.sh). In the web frontend,
this is highlighted by renaiming the interrupt button to kill.

Warning

issuing the interrupt command twice kills all the running
scripts, including the child processes started by them!

Enabling a new code version is allowed only when no script from the current
code version is currently running. If it is not desired to wait for them
to complete execution, interrupt may be called first. When enabling a
new code version, immediately after copying the new code to the agents,
the new init.sh script is called.

Checking the status of the agents

The running status of the various scripts for each agent can easily be
checked in both the web frontend and using the command-line interface.

In the web frontend, the instance view of each agent contains a table with
the 5 scripts and each script’s running status, along with a led that codes
the status using colors: light blue when the current version of the script
was never executed, blinking green when the script is currently running
and red when the script finished execution. In the latter case, hovering
the mouse pointer over the led will indicate the return code in a tool-tip
text.

With the command-line interface, the status of the scripts for each agent
can be listed using the following command:

$ cpsclient.py get_script_status <serviceid>

The Generic service also facilitates retrieving the agent’s log file and
the contents of standard output and error streams. In the web frontend,
three links are present in the instance’s view of each agent. Using the
command line, the logs can be retrieved with the following command:

$ cpsclient.py get_script_status <serviceid> <agent_id>

To find out the agent_id of a specific instance, you may issue the following command:

$ cpsclient.py list_nodes <serviceid>

ConPaaS in a VirtualBox Nutshell

ConPaaS in a Nutshell is a version of ConPaaS which runs inside a
single VirtualBox VM. It is the recommended way to test the system
and/or to run it in a single physical machine.

Starting the Nutshell

In this section, we assume that the Nutshell is already installed into VirtualBox
according to the instructions in the Installation guide. If this is not the case,
you may want to check these instructions first: ConPaaS in a Nutshell.

	Open VirtualBox and start the Nutshell by selecting it from the list on the left
side and then clicking the Start button. Wait a few seconds until you see a
login prompt. Any messages that may appear in the VM window at this stage are
usually harmless debug messages which can be ignored.

	Once the Nutshell is started and the login prompt appears, you can log into it.
The login credentials are:

Username: stack
Password: contrail

	One important piece of information which you may want to note down is
the IP address assigned to the Nutshell VM. This can be used to access
the web frontend directly from your host machine or to SSH into the Nutshell
VM in order to execute command-line interface commands or to copy files.
To find it, type the following command:

$ ifconfig br200

The IP address will appear in the second line of text.

Using the Nutshell via the graphical frontend

You can access the ConPaaS frontend by inserting the IP address of the
Nutshell VM in your Web browser, making sure to add https:// in front of it:

https://192.168.56.xxx

Warning

The first time you access the web frontend, a security warning will appear,
stating that the SSL certificate of the website is invalid. This is normal, as
the certificate is self-signed and the server name is usually different from the
IP address you are using to access it. To proceed further, you need to confirm
that you want to continue anyway. The procedure is different depending on your
web browser.

Note that the frontend is accessible only from your local
machine. Other machines will not be able to access it. A default user
is available for you, its credentials are:

ConPaaS
Username: test
Password: password

You can now use the frontend in the same way as any ConPaaS system,
creating applications, services etc. Note that the services are also
only accessible from your local machine.

Note that also Horizon (the Openstack dashboard) is running on it as
well. In case you are curious and want to have a look under the hood,
Horizon can be reached (using HTTP, not HTTPS) at the same IP address:

http://192.168.56.xxx

The credentials for Horizon are:

Openstack
Username: admin
Password: password

Using the Nutshell via the command-line interface

You can also use the command-line to control your Nutshell installation.
You need to log in as the stack user directly in the VirtualBox window
or using SSH to connect to the Nutshell VM’s IP address (the preferred method).

On login, both the ConPaaS and OpenStack users will already be authenticated.
You should be able to execute ConPaaS commands, for example starting a
helloworld service can be done with:

$ cpsclient.py create helloworld

or:

$ cps-tools service create helloworld

OpenStack commands are also available. For example:

$ nova list

lists all the active instances and:

$ cinder list

lists all the existing volumes.

The Nutshell contains a Devstack installation of Openstack,
therefore different services run and log on different tabs of a
screen session. In order to stop, start or consult the logs of these
services, connect to the screen session by executing:

$ /opt/stack/devstack/rejoin-stack.sh

Every tab in the screen session is labeled with the name of the
service it belongs to. For more information on how to navigate between
tabs and scroll up and down the logs, please consult the manual page
for the screen command.

Changing the IP address space used by the Nutshell

The Nutshell VM uses an IP address assigned by the DHCP server of the
host-only network of VirtualBox. In the default settings, the DHCP server
uses a range from 192.168.56.101 to 192.168.56.254. If you want to change
this IP range, you can do this in the VirtualBox window by going to File >
Preferences > Network > Host-only Networks. Select the vboxnet0 network
and click on the Edit host-only network button and then DHCP server.

Note that ConPaaS services running inside the Nutshell VM also need to have
IP addresses assigned. This is done using OpenStack’s floating IP mechanism.
The default configuration uses an IP range from 192.168.56.10 to 192.168.56.99,
which does not overlap with the default one used by the DHCP server of the
host-only network in VirtualBox. If you want to modify this IP range, execute
the following commands on the Nutshell as the stack user:

$ nova floating-ip-bulk-delete 192.168.56.0/25
$ nova floating-ip-bulk-create --pool public --interface br200 <new_range>

The first command removes the default IP range for floating IPs and the
second adds the new range. After executing these two commands, do not
forget to restart the Nutshell so the changes take effect:

$ sudo reboot

Using the Nutshell to host a publicly accessible ConPaaS installation

The Nutshell can also be configured to host services which are accessible from
the public Internet. In this case, the floating IP pool in use by OpenStack
needs to be configured with an IP range that contains public IP addresses.
The procedure for using such an IP range is the same as the one described
above. Care must be taken so that these public IP addresses are not in use by
other machines in the network and routing for this range is correctly implemented.

If the ConPaaS frontend itself needs to be publicly accessible, the host-only
network of VirtualBox can be replaced with a bridged network connected to a
physical network interface that provides Internet access. Note that this
bridge network must use a DHCP server that assigns a public IP address to the
Nutshell or, alternatively, the Nutshell can be configured to use a static IP
address (for example by editing the file /etc/network/interfaces). If the
Nutshell is publicly accessible, you may want to make sure that tighter security
is implemented: the default user for the ConPaaS frontend is removed and access
to SSH and OpenStack dashboard is blocked.

ConPaaS on Raspberry PI

The following ConPaaS services are supported on the Raspberry PI version of ConPaaS:

	php: PHP version 5.3 with Nginx

	java: Apache Tomcat 6.0 servlet container

	xtreemfs: XtreemFS-1.5 distributed file system

	generic: deployment of arbitrary server-side applications

For instructions on how to install the Raspberry PI version of ConPaaS, please refer
to the relevant section in the Installation guide: ConPaaS on Raspberry PI.

Access credentials

Backend VM:

IP address: 172.16.0.1
user: stack
password: raspberry

For OpenStack’s dashboard (Horizon):

URL: http://172.16.0.1/
user: admin
password: password

For the ConPaaS web frontend:

URL: https://172.16.0.1/
user: test
password: password

Raspberry PI:

IP address: 172.16.0.11
user: pi
password: raspberry

Containers deployed on the Raspberry PI:

IP addresses (public): between 172.16.0.225 and 172.16.0.254
IP addresses (private): between 172.16.0.32 and 172.16.0.61
user: root
password: contrail

Networking setup

IP addresses on the Raspberry PI and backend VM are already configured, all in the
172.16.0.0/24 range. The Raspberry PI is also configured to accept a secondary IP address
using DHCP. If this is available, it will use it for Internet access. If not, it will
route the Internet traffic through the backend VM. Everything is already configured, no other
configurations are needed. In principle there is no need to have Internet access on the PI
(if the hosted application does not require it), however note that in this case you will
need to manually set the correct time on the Raspberry PI after every reboot, or else the
SSL certificates-based authentication in ConPaaS will fail.

If another device has to take part in this local network (for example to allow it to easily
ssh into the different components of the system, or for the clients of the application hosted
on the Raspberry PIs), you can use any IP in that range that does not collide with the ones
used by the components listed above. For example, additional servers can have IP addresses
between 172.16.0.2 and 172.16.0.10, additional Raspberry PIs can use IPs between
172.16.0.12 and 172.16.0.31, clients can use IPs between 172.16.0.200 and
172.16.0.223. The ranges 172.16.0.64/26, 172.16.0.128/26 are also completely free.

The system was designed to allow connecting the components using an already-existing local
network that you may have, without interfering too much with it. That’s why it does not run
by default a DHCP server to automatically allocate IPs to other machines that get connected
to this network. On the other hand, this means that you will need to manually add an IP address
to any other machine that needs to take part in this network. This address can be added as
a secondary IP address, besides the usual address that your device has, if using an
already-existing network. For example, in order to access the system from the laptop that
hosts the backend VM, another IP address from the 172.16.0.0/24 range needs to be assigned
as the secondary address to the eth0 interface of this laptop.

Usage example

Here follows an usage example in which we create and start a new Generic Service using the
command line tools. The same outcome can also be achieved using the graphical frontend, which
can be accessed using the backend VM’s IP address (note that the protocol should be
HTTPS, not HTTP): https://172.16.0.1/

	Start the Backend VM. Start the Raspberry PI. Allow them some time to finish booting.

	Make sure the time is synchronized between the Raspberry PI and the Backend VM. This step
is crucial in order to allow the SSL certificates-based authentication in ConPaaS to succeed.
As the Raspberry PI does not have an internal battery to keep the time when powered off, it
relies on the NTP protocol to set its time. If there is no Internet connectivity or updating
the time through NTP fails, the correct time will have to be set manually using the date
command after every reboot.

	Check that the OpenStack services are up and running. On the backend server, run the
following command:

stack@nutshell:~$ nova-manage service list
[... debugging output omitted ...]
Binary Host Zone Status State Updated_At
nova-conductor nutshell internal enabled :-) 2015-11-08 15:48:07
nova-cert nutshell internal enabled :-) 2015-11-08 15:48:08
nova-scheduler nutshell internal enabled :-) 2015-11-08 15:48:07
nova-consoleauth nutshell internal enabled :-) 2015-11-08 15:48:07
nova-compute raspberrypi nova enabled :-) 2015-11-08 15:48:04
nova-network nutshell internal enabled :-) 2015-11-08 15:48:05

As in the example above, you should see 6 nova services running, all of them should be
up (smiley faces). Pay extra attention to the nova-compute service, which is running on
the Raspberry PI, and may become ready a little later than the others.

Do not proceed further if any service is down.

	Create a new Generic Service using ConPaaS. This will start a new container for the
ConPaaS Manager:

stack@nutshell:~$ time cps-tools service create generic
Creating new manager on 172.16.0.225... done.

real 2m04.515s
user 0m0.704s
sys 0m0.152s

This step should take around 2-3 minutes. During this time, the first container is created
and the ConPaaS Manager is started and initialized.

Check that the container is up and running with nova list:

stack@nutshell:~$ nova list
+--------------------------------------+---+--------+------------+-------------+-----------------------------------+
| ID | Name | Status | Task State | Power State | Networks |
+--------------------------------------+---+--------+------------+-------------+-----------------------------------+
| 3c5c3375-1e73-4e0a-b6cc-223460c726e0 | Server 3c5c3375-1e73-4e0a-b6cc-223460c726e0 | ACTIVE | - | Running | private=172.16.0.42, 172.16.0.225 |
+--------------------------------------+---+--------+------------+-------------+-----------------------------------+

	Start the newly created service. This will start the second container on the Raspberry PI
in which the first ConPaaS agent can host an application:

stack@nutshell:~$ time cps-tools service start 1
Service 1 is starting...

real 1m02.043s
user 0m4.948s
sys 0m1.384s

This step should take around 1-2 minutes. During this time, the second container is created
and the ConPaaS Agent is started and initialized.

	Find out the IP address of the newly started container:

stack@nutshell:~$ cps-tools generic list_nodes 1
master: node iaasi-00000012 with IP address 172.16.0.226

You can also determine the IP addresses of the containers with nova list:

stack@nutshell:~$ nova list
+--------------------------------------+---+--------+------------+-------------+-----------------------------------+
| ID | Name | Status | Task State | Power State | Networks |
+--------------------------------------+---+--------+------------+-------------+-----------------------------------+
| 2a1d758d-5300-4d7f-8ba2-4f1499838a7d | Server 2a1d758d-5300-4d7f-8ba2-4f1499838a7d | ACTIVE | - | Running | private=172.16.0.43, 172.16.0.226 |
| 3c5c3375-1e73-4e0a-b6cc-223460c726e0 | Server 3c5c3375-1e73-4e0a-b6cc-223460c726e0 | ACTIVE | - | Running | private=172.16.0.42, 172.16.0.225 |
+--------------------------------------+---+--------+------------+-------------+-----------------------------------+

	Log on to the container and check that the ConPaaS Agent is running correctly (the default
script just prints some information):

stack@nutshell:~$ ssh root@172.16.0.226
root@172.16.0.226's password: [contrail]
Linux conpaas 4.1.12-v7+ #824 SMP PREEMPT Wed Oct 28 16:46:35 GMT 2015 armv7l
[... welcome message omitted ...]
root@server-2a1d758d-5300-4d7f-8ba2-4f1499838a7d:~# cat generic.out
Sun Nov 8 16:21:21 UTC 2015
Executing script init.sh
Parameters (0):
My IP is 172.16.0.226
My role is master
My master IP is 172.16.0.226
Information about other agents is stored at /var/cache/cpsagent/agents.json
[{"ip": "172.16.0.226", "role": "master", "id": "iaasi-00000012"}]

If the output looks like in the example above, everything is running smoothly!

For more information on ConPaaS, please refer to section The Generic service.

	Do not forget to delete the service after you’re done with it:

stack@nutshell:~$ cps-tools service delete 1
Deleting service...
Service 1 has been deleted.

 Copyright 2012-2015, Contrail and HARNESS consortia.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ConPaaS 1.5.1 documentation

Manifest Guide

A manifest is a JSON file that describes a ConPaaS application. It can be
written with your favourite text editor, or automatically generated from a
running ConPaaS application.

Creating an application from a manifest

Sudoku example

Here is manifest for an application that will run a simple PHP program (a free
sudoku PHP program). File sudoku.mnf:

{
 "Application" : "Sudoku example",

 "Services" : [
 {
 "ServiceName" : "PHP sudoku backend",
 "Type" : "php",
 "Start" : 0,
 "Archive" : "http://www.conpaas.eu/wp-content/uploads/2011/09/sudoku.tar.gz"
 }
]
}

This simple example states the application name and the service list which is
here a single PHP service. It gives the name of the service, its type, whether
it should be automatically started (1 for autostart, 0 otherwise), and it gives
the path to the PHP program that will be uploaded into the created PHP service.

To create an application from a manifest, you can use either the web client or
the command line client.

	On the web client, after login, press button “deploy ready-made application”,
then press button “Browse...” and select your sudoku.mnf. A popup will
appear to confirm that the creation of the application has started.

	On the command line, you can simply run:

cpsclient.py manifest sudoku.mnf

In this example, once the application has been created, you will have to start
the PHP service either with the web client (button start on the PHP service
page) or with command line client (cpsclient.py start <php_serv_id>).

MediaWiki example

On the ConPaaS website there is a short video
(http://www.youtube.com/watch?v=kMzx8sgr96I) that shows how to setup a
MediaWiki installation using the ConPaaS frontend.
In this section we are going to create a manifest file that replicates
exactly the same MediaWiki application shown in the video:

{
 "Application" : "Wiki in the Cloud",

 "Services" : [
 {
 "ServiceName" : "Wiki-Webserver",
 "Type" : "java",
 "Archive" : "http://mywebsite.com/scalaris-wiki.war",
 "StartupInstances" :
 {
 "proxy" : "1",
 "web" : "1",
 "backend" : "5"
 },
 "Start" : 1
 },
 {
 "ServiceName" : "Wiki-Database",
 "Type" : "scalaris",
 "Archive" : "http://mywebsite.com/wikipediadump",
 "Start" : 1
 }
]
}

Even if the application is more complicated than the sudoku, the
manifest file is not very different.
In this case the file specifies two different services: Java and
Scalaris (which is a NoSQL database). Also, given that the service might
receive lots of traffic, 5 instances of the Java backend are started.
In the presentation the Java instances are added later, but in this
example to show how the StartupInstances works, 5 Java virtual
machines are started from the beginning.
Unfortunately the option of choosing a static IP for the database is not
yet available, so we cannot specify it in the Java service at startup.

Generating a manifest from a created application

You can generate a manifest from an existing ConPaaS application with command line client:

cpsclient.py download_manifest appl_id > myappl.mnf

You can edit the generated manifest myappl.mnf to your liking.
Then you can create a new application with this manifest:

cpslient.py manifest myappl.mnf

Note: in ConPaaS 1.3.1, you cannot get a manifest of an existing application
through the web client. It’s only available through the command line client or
through the API.

Complete description of the manifest fields

In this section, we present the complete description of all the possible
fields that can be used in the manifest. We will also distinguish
between required and optional fields.
Currently, the available service types are:

	php

	java

	mysql

	scalaris

	hadoop

	selenium

	xtreemfs

	taskfarm

These are the required fields for each service

	Type: Specify which type of service you want to create

If nothing else is specified in the manifest the service will have the
default name and it will not be started.

The following fields are optional and are available in all the services.

	Cloud: Specify which cloud your service needs to run on

	Start: Specify if the service should be started or not (1 or 0)

	ServiceName: Specify the name of the service

	StartupScript: Specify a URL of a script that will be executed at
the startup of the agents

It is not required to define how many instances the service needs. By
default if the user starts a service, one instance will be created. If the
user wants to create more instances, then the user can use this option in the manifest.

	StartupInstances: Specify how many instances of each type needs to
be created at startup.

This will be an object that can contain different fields.
All the possible fields that can be specified for each service are
described in the following table:

	Service
	Type

	php
	proxy, web, backend

	java
	proxy, web, backend

	mysql
	slaves

	scalaris
	scalaris

	hadoop
	workers

	selenium
	node

	xtreemfs
	osd

Next, I’ll show all the manifest fields that are specific for each
service.

php

	Archive: Specify an URL where the service should fetch the source
archive.

java

	Archive: Specify an URL where the service should fetch the source
archive.

mysql

	Dump: Specify an URL where the service should fetch the dump

xtreemfs

	VolumeStartup: Specify a volume that should be created at startup.
This needs to be an object with the following fields inside
	volumeName: Name of the volume

	owner: Owner of the volume

Other fields are optional and are not service-specific, but
manifest-specific instead, so they need to be specified on top of the
file (see the full example in the end) are the following:

	Description: This is just a description of the manifest. It is not
parsed by ConPaaS, so it is needed just as a reminder for yourself

	Application: Specify the application name on which your services
will start. It can be a new application or an existing one. If it is
omitted, the default application will be choose.

Full specification file

This example is a full specification file with all the possible options
available:

{
 "Description" : "Description of the project",
 "Application" : "New full application"

 "Services" : [
 {
 "ServiceName" : "Meaningful PHP service name",
 "Type" : "php",
 "Cloud" : "default",
 "Start" : 0,
 "Archive" : "http://mywebsite.com/archive.tar.gz",
 "StartupInstances" : {
 "proxy" : "1",
 "web" : "1",
 "backend" : "1"
 }
 },
 {
 "ServiceName" : "Meaningful Java service name",
 "Type" : "java",
 "Cloud" : "default",
 "Start" : 0,
 "Archive" : "http://mywebsite.com/project.war",
 "StartupInstances" : {
 "proxy" : "1",
 "web" : "1",
 "backend" : "1"
 }
 },
 {
 "ServiceName" : "Meaningful MySQL service name",
 "Type" : "mysql",
 "Cloud" : "default",
 "Start" : 0,
 "Dump" : "http://mywebsite.com/dump.sql",
 "StartupInstances" : {
 "slaves" : "1"
 }
 },
 {
 "ServiceName" : "Meaningful Scalaris service name",
 "Type" : "scalaris",
 "Cloud" : "default",
 "Start" : 0,
 "StartupInstances" : {
 "scalaris" : "1"
 }
 },
 {
 "ServiceName" : "Meaningful Hadoop service name",
 "Type" : "hadoop",
 "Cloud" : "default",
 "Start" : 0,
 "StartupInstances" : {
 "workers" : "1"
 }
 },
 {
 "ServiceName" : "Meaningful Selenium service name",
 "Type" : "selenium",
 "Cloud" : "default",
 "Start" : 0,
 "StartupInstances" : {
 "node" : "1"
 }
 },
 {
 "ServiceName" : "Meaningful XtreemFS service name",
 "Type" : "xtreemfs",
 "Cloud" : "default",
 "Start" : 0,
 "VolumeStartup" : {
 "volumeName" : "Meaningful volume name",
 "owner" : "volumeowner"
 },
 "StartupInstances" : {
 "osd" : "1"
 }
 }
]
}

 Copyright 2012-2015, Contrail and HARNESS consortia.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ConPaaS 1.5.1 documentation

Internals

Introduction

A ConPaaS service may consist of three main entities: the manager, the
agent and the frontend. The (primary) manager resides in the first VM
that is started by the frontend when the service is created and its role
is to manage the service by providing supporting agents, maintaining a
stable configuration at any time and by permanently monitoring the
service’s performance. An agent resides on each of the other VMs that
are started by the manager. The agent is the one that does all the work.
Note that a service may contain one manager and multiple agents, or
multiple managers that also act as agents.

To implement a new ConPaaS service, you must provide a new manager
service, a new agent service and a new frontend service (we assume that
each ConPaaS service can be mapped on the three entities architecture).
To ease the process of adding a new ConPaaS service, we propose a
framework which implements common functionality of the ConPaaS services.
So far, the framework provides abstraction for the IaaS layer (adding
support for a new cloud provider should not require modifications in any
ConPaaS service implementation) and it also provides abstraction for the
HTTP communication (we assume that HTTP is the preferred protocol for
the communication between the three entities).

ConPaaS directory structure

You can see below the directory structure of the ConPaaS software. The
core folder under src contains the ConPaaS framework. Any service
should make use of this code. It contains the manager http server, which
instantiates the python manager class that implements the required
service; the agent http server that instantiates the python agent class
(if the service requires agents); the IaaS abstractions and other useful
code.

A new service should be added in a new python module under the
ConPaaS/src/conpaas/services folder:

ConPaaS/ (conpaas/conpaas-services/)
│── src
│ │── conpaas
│ │ │── core
│ │ │ │── clouds
│ │ │ │ │── base.py
│ │ │ │ │── dummy.py
│ │ │ │ │── ec2.py
│ │ │ │ │── federation.py
│ │ │ │ │── opennebula.py
│ │ │ │ │── openstack.py
│ │ │ │── agent.py
│ │ │ │── controller.py
│ │ │ │── expose.py
│ │ │ │── file.py
│ │ │ │── ganglia.py
│ │ │ │── git.py
│ │ │ │── https
│ │ │ │── iaas.py
│ │ │ │── ipop.py
│ │ │ │── log.py
│ │ │ │── manager.py
│ │ │ │── manager.py.generic_add_nodes
│ │ │ │── misc.py
│ │ │ │── node.py
│ │ │ │── services.py
│ │ │── services
│ │ │── cds/
│ │ │── galera/
│ │ │── helloworld/
│ │ │── htc/
│ │ │── htcondor/
│ │ │── mapreduce/
│ │ │── scalaris/
│ │ │── selenium/
│ │ │── taskfarm/
│ │ │── webservers/
│ │ │── xtreemfs/
│ │── dist
│ │── libcloud -> ../contrib/libcloud/
│ │── setup.py
│ │── tests
│ │── core
│ │── run_tests.py
│ │── services
│ │── unit-tests.sh
│── config
│── contrib
│── misc
│── sbin
│── scripts

In the next paragraphs we describe how to add the new ConPaaS service.

Service Organization

Service’s name

The first step in adding a new ConPaaS service is to choose a name for
it. This name will be used to construct, in a standardized manner, the
file names of the scripts required by this service (see below).
Therefore, the names should not contain spaces, nor unaccepted
characters.

Scripts

To function properly, ConPaaS uses a series of configuration files and
scripts. Some of them must be modified by the administrator, i.e. the
ones concerning the cloud infrastructure, and the others are used,
ideally unchanged, by the manager and/or the agent. A newly added
service would ideally function with the default scripts. If, however,
the default scripts are not satisfactory (for example the new service
would need to start something on the VM, like a memcache server) then
the developers must supply a new script/config file, that would be used
instead of the default one. This new script’s name must be preceded by
the service’s chosen name (as described above) and will be selected by
the frontend at run time to generate the contextualization file for the
manager VM. (If the frontend doesn’t find such a script/config file for
a given service, then it will use the default script). Note that some
scripts provided for a service do not replace the default ones, instead
they will be concatenated to them (see below the agent and manager
configuration scripts).

Below we give an explanation of the scripts and configuration files used
by a ConPaaS service (there are other configuration files used by the
frontend but these are not relevant to the ConPaaS service). Basically
there are two scripts that a service uses to boot itself up - the
manager contextualization script, which is executed after the manager VM
booted, and the agent contextualization script, which is executed after
the agent VM booted. These scripts are composed of several parts, some
of which are customizable to the needs of the new service.

In the ConPaaS home folder (CONPAAS_HOME) there is the config folder
that contains configuration files in the INI format and the scripts
folder that contains executable bash scripts. Some of these files are
specific to the cloud, other to the manager and the rest to the agent.
These files will be concatenated in a single contextualization script,
as described below.

	Files specific to the Cloud:

(1) CONPAAS_HOME/config/cloud/cloud_name.cfg, where
cloud_name refers to the clouds supported by the system (for now
OpenNebula and EC2). So there is one such file for each cloud the
system supports. These files are filled in by the administrator. They
contain information such as the username and password to access the
cloud, the OS image to be used with the VMs, etc. These files are
used by the frontend and the manager, as both need to ask the cloud
to start VMs.

(2) CONPAAS_HOME/scripts/cloud/cloud_name, where cloud_name
refers to the clouds supported by the system (for now OpenNebula and
EC2). So, as above, there is one such file for each cloud the system
supports. These scripts will be included in the contextualization
files. For example, for OpenNebula, this file sets up the network.

	Files specific to the Manager:

(3) CONPAAS_HOME/scripts/manager/manager-setup, which prepares the
environment by copying the ConPaaS source code on the VM, unpacking
it, and setting up the PYTHONPATH environment variable.

(4) CONPAAS_HOME/config/manager/service_name-manager.cfg, which
contains configuration variables specific to the service manager (in
INI format). If the new service needs any other variables (like a
path to a file in the source code), it should provide an annex to the
default manager config file. This annex must be named
service_name-manager.cfg and will be concatenated to
default-manager.cfg

(5) CONPAAS_HOME/scripts/manager/service_name-manager-start,
which starts the server manager and any other programs the service
manager might use.

(6) CONPAAS_HOME/sbin/manager/service_name-cpsmanager (will be
started by the service_name-manager-start script), which starts
the manager server, which in turn will start the requested manager
service.

Scripts (1), (2), (3), (4) and (5) will be used by the frontend to
generate the contextualization script for the manager VM. After this
scripts executes, a configuration file containing the concatenation
of (1) and (4) will be put in ROOT_DIR/config.cfg and then (6) is
started with the config.cfg file as a parameter that will be
forwarded to the new service.

Examples:

Listing 1: Script (1) ConPaaS/config/cloud/opennebula.cfg
[iaas]
DRIVER = OPENNEBULA

The URL of the OCCI interface at OpenNebula. Note: ConPaaS currently
supports only the default OCCI implementation that comes together
with OpenNebula. It does not yet support the full OCCI-0.2 and later
versions.
URL =

TODO: Currently, the TaskFarming service uses XMLRPC to talk to Opennebula.
This is the url to the server (Ex. http://dns.name.or.ip:2633/RPC2)
XMLRPC =

Your OpenNebula user name
USER =

Your OpenNebula password
PASSWORD =

The image ID (an integer). You can list the registered OpenNebula
images with command "oneimage list" command.
IMAGE_ID =

OCCI defines 4 standard instance types: small medium large and custom. This
variable should choose one of these. (The small, medium and large instances have
predefined memory size and cpu, but the custom one permits the customization of
these parameters. The best option is to use the custom variable as some services,
like map-reduce and mysql, must be able to start VMs with a given quantity of memory)
INST_TYPE = custom

The network ID (an integer). You can list the registered OpenNebula
networks with the "onevnet list" command.
NET_ID =

The network gateway through which new VMs can route their traffic in
OpenNebula (an IP address)
NET_GATEWAY =

The DNS server that VMs should use to resolve DNS names (an IP address)
NET_NAMESERVER =

The OS architecture of the virtual machines.
(corresponds to the OpenNebula "ARCH" parameter from the VM template)
OS_ARCH =

The device that will be mounted as root on the VM. Most often it
is "sda" or "hda" for KVM, and "xvda2" for Xen.
(corresponds to the OpenNebula "ROOT" parameter from the VM template)
OS_ROOT =

The device on which the VM image disk is mapped.
DISK_TARGET =

The device associated with the CD-ROM on the virtual machine. This
will be used for contextualization in OpenNebula. Most often it is
"sr0" for KVM and "xvdb" for Xen.
(corresponds to the OpenNebula "TARGET" parameter from the "CONTEXT"
section of the VM template)
CONTEXT_TARGET =

##
The following values are only needed by the Task Farming service
##

PORT =

A unique name used in the service to specify different clouds
HOSTNAME =

The accountable time unit. Different clouds charge at different
frequencies (e.g. Amazon charges per hour = 60 minutes)
TIMEUNIT =

The price per TIMEUNIT of this specific machine type on this cloud
COSTUNIT =

The maximum number of VMs that the system is allowed to allocate from this
cloud
MAXNODES =
SPEEDFACTOR =

Listing 2: Script (2) ConPaaS/scripts/cloud/opennebula
#!/bin/bash

if [-f /mnt/context.sh]; then
 . /mnt/context.sh
fi

/sbin/ifconfig eth0 $IP_PUBLIC netmask $NETMASK
/sbin/ip route add default via $IP_GATEWAY
echo "nameserver $NAMESERVER" > /etc/resolv.conf
echo "prepend domain-name-servers $NAMESERVER;" >> /etc/dhcp/dhclient.conf

HOSTNAME=`/usr/bin/host $IP_PUBLIC | cut -d' ' -f5 | cut -d'.' -f1`
/bin/hostname $HOSTNAME

##
Create the one_auth file from contextualization variable ONE_AUTH_CONTENT
and set it as an environment variable for the JVM
This is needed for services that use XMLRPC instead of OCCI

if [$ONE_AUTH_CONTENT]; then
 export ONE_AUTH=/root/.one_auth
 export ONE_XMLRPC
 echo $ONE_AUTH_CONTENT > $ONE_AUTH
fi

PCI Hotplug Support is needed in order to attach persistent storage volumes
to this instance
/sbin/modprobe acpiphp
/sbin/modprobe pci_hotplug

Listing 3: Script (3) ConPaaS/scripts/manager/manager-setup
#!/bin/bash

Ths script is part of the contextualization file. It
copies the source code on the VM, unpacks it, and sets
the PYTHONPATH environment variable.

Is filled in by the director
DIRECTOR=%DIRECTOR_URL%
SOURCE=$DIRECTOR/download
ROOT_DIR=/root
CPS_HOME=$ROOT_DIR/ConPaaS

LOG_FILE=/var/log/cpsmanager.log
ETC=/etc/cpsmanager
CERT_DIR=$ETC/certs
VAR_TMP=/var/tmp/cpsmanager
VAR_CACHE=/var/cache/cpsmanager
VAR_RUN=/var/run/cpsmanager

mkdir -p $VAR_TMP
mkdir -p $VAR_CACHE
mkdir -p $VAR_RUN

mkdir $CERT_DIR
mv /tmp/*.pem $CERT_DIR

wget --ca-certificate=$CERT_DIR/ca_cert.pem -P $ROOT_DIR/ $SOURCE/ConPaaS.tar.gz
tar -zxf $ROOT_DIR/ConPaaS.tar.gz -C $ROOT_DIR/
export PYTHONPATH=$CPS_HOME/src/:$CPS_HOME/contrib/

Listing 4: Script (4) ConPaaS/config/manager/default-manager.cfg
[manager]

Service TYPE will be filled in by the director
TYPE = %CONPAAS_SERVICE_TYPE%

BOOTSTRAP = $SOURCE
MY_IP = $IP_PUBLIC

These are used by the manager to
communicate with the director to:
- decrement the number of credits the user has.
(they are used when a VM ran more than 1 hour)
- request a new certificate from the CA
Everything will be filled in by the director
DEPLOYMENT_NAME = %CONPAAS_DEPLOYMENT_NAME%
SERVICE_ID = %CONPAAS_SERVICE_ID%
USER_ID = %CONPAAS_USER_ID%
APP_ID = %CONPAAS_APP_ID%
CREDIT_URL = %DIRECTOR_URL%/callback/decrementUserCredit.php
TERMINATE_URL = %DIRECTOR_URL%/callback/terminateService.php
CA_URL = %DIRECTOR_URL%/ca/get_cert.php

IPOP_BASE_NAMESPACE = %DIRECTOR_URL%/ca/get_cert.php
The following IPOP directives are added by the director if necessary
IPOP_BASE_IP = %IPOP_BASE_IP%
IPOP_NETMASK = %IPOP_NETMASK%
IPOP_IP_ADDRESS = %IPOP_IP_ADDRESS%
IPOP_SUBNET = %IPOP_SUBNET%

This directory structure already exists in the VM (with ROOT = '') - see
the 'create new VM script' so do not change ROOT unless you also modify
it in the VM. Use these files/directories to put variable data that
your manager might generate during its life cycle
LOG_FILE = $LOG_FILE
ETC = $ETC
CERT_DIR = $CERT_DIR
VAR_TMP = $VAR_TMP
VAR_CACHE = $VAR_CACHE
VAR_RUN = $VAR_RUN
CODE_REPO = %(VAR_CACHE)s/code_repo

CONPAAS_HOME = $CPS_HOME

The default block device where the disks are attached to.
DEV_TARGET = sdb

Add below other config params your manager might need and save a file as
%service_name%-manager.cfg
Otherwise this file will be used by default

Listing 5: Script (5) ConPaaS/scripts/manager/default-manager-start
#!/bin/bash

This script is part of the contextualization file. It
starts a python script that parses the given arguments
and starts the manager server, which in turn will start
the manager service.

This file is the default manager-start file. It can be
customized as needed by the service.

$CPS_HOME/sbin/manager/default-cpsmanager -c $ROOT_DIR/config.cfg 1>$ROOT_DIR/manager.out 2>$ROOT_DIR/manager.err &
manager_pid=$!
echo $manager_pid > $ROOT_DIR/manager.pid

Listing 6: Script (6) ConPaaS/sbin/manager/default-cpsmanager
#!/usr/bin/python
'''
Copyright (c) 2010-2012, Contrail consortium.
All rights reserved.

Redistribution and use in source and binary forms,
with or without modification, are permitted provided
that the following conditions are met:

 1. Redistributions of source code must retain the
 above copyright notice, this list of conditions
 and the following disclaimer.
 2. Redistributions in binary form must reproduce
 the above copyright notice, this list of
 conditions and the following disclaimer in the
 documentation and/or other materials provided
 with the distribution.
 3. Neither the name of the Contrail consortium nor the
 names of its contributors may be used to endorse
 or promote products derived from this software
 without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

Created on Jul 4, 2011

@author: ielhelw
'''
from os.path import exists
from conpaas.core.https import client, server

if __name__ == '__main__':
 from optparse import OptionParser
 from ConfigParser import ConfigParser
 import sys

 parser = OptionParser()
 parser.add_option('-p', '--port', type='int', default=443, dest='port')
 parser.add_option('-b', '--bind', type='string', default='0.0.0.0', dest='address')
 parser.add_option('-c', '--config', type='string', default=None, dest='config')
 options, args = parser.parse_args()

 if not options.config or not exists(options.config):
 print >>sys.stderr, 'Failed to find configuration file'
 sys.exit(1)

 config_parser = ConfigParser()
 try:
 config_parser.read(options.config)
 except:
 print >>sys.stderr, 'Failed to read configuration file'
 sys.exit(1)

 """
 Verify some sections and variables that must exist in the configuration file
 """
 config_vars = {
 'manager': ['TYPE', 'BOOTSTRAP', 'LOG_FILE',
 'CREDIT_URL', 'TERMINATE_URL', 'SERVICE_ID'],
 'iaas': ['DRIVER'],
 }
 config_ok = True
 for section in config_vars:
 if not config_parser.has_section(section):
 print >>sys.stderr, 'Missing configuration section "%s"' % (section)
 print >>sys.stderr, 'Section "%s" should contain variables %s' % (section, str(config_vars[section]))
 config_ok = False
 continue
 for field in config_vars[section]:
 if not config_parser.has_option(section, field)\
 or config_parser.get(section, field) == '':
 print >>sys.stderr, 'Missing configuration variable "%s" in section "%s"' % (field, section)
 config_ok = False
 if not config_ok:
 sys.exit(1)

 # Initialize the context for the client
 client.conpaas_init_ssl_ctx(config_parser.get('manager', 'CERT_DIR'),
 'manager', config_parser.get('manager', 'USER_ID'),
 config_parser.get('manager', 'SERVICE_ID'))

 # Start the manager server
 print options.address, options.port
 d = server.ConpaasSecureServer((options.address, options.port),
 config_parser,
		 'manager',
 reset_config=True)
 d.serve_forever()

	Files specific to the Agent

They are similar to the files described above for the manager, but
this time the contextualization file is generated by the manager.

Scripts and config files directory structure

Below you can find the directory structure of the scripts and
configuration files described above.

ConPaaS/ (conpaas/conpaas-services/)
│── config
│ │── agent
│ │ │── default-agent.cfg
│ │ │── galera-agent.cfg
│ │ │── helloworld-agent.cfg
│ │ │── htc-agent.cfg
│ │ │── htcondor.cfg
│ │ │── mapreduce-agent.cfg
│ │ │── scalaris-agent.cfg
│ │ │── web-agent.cfg
│ │ │── xtreemfs-agent.cfg
│ │── cloud
│ │ │── clouds-template.cfg
│ │ │── ec2.cfg
│ │ │── ec2.cfg.example
│ │ │── opennebula.cfg
│ │ │── opennebula.cfg.example
│ │── ganglia
│ │ │── ganglia_frontend.tmpl
│ │ │── ganglia-gmetad.tmpl
│ │ │── ganglia-gmond.tmpl
│ │── ipop
│ │ │── bootstrap.config.tmpl
│ │ │── dhcp.config.tmpl
│ │ │── ipop.config.tmpl
│ │ │── ipop.vpn.config.tmpl
│ │ │── node.config.tmpl
│ │── manager
│ │── default-manager.cfg
│ │── htc-manager.cfg
│ │── htcondor.cfg
│ │── java-manager.cfg
│ │── php-manager.cfg
│── sbin
│ │── agent
│ │ │── default-cpsagent
│ │ │── web-cpsagent
│ │── manager
│ │── default-cpsmanager
│ │── php-cpsmanager
│ │── taskfarm-cpsmanager
│── scripts
 │── agent
 │ │── agent-setup
 │ │── default-agent-start
 │ │── htc-agent-start
 │ │── htcondor-agent-start
 │ │── mapreduce-agent-start
 │ │── scalaris-agent-start
 │ │── selenium-agent-start
 │ │── taskfarm-agent-start
 │ │── web-agent-start
 │ │── xtreemfs-agent-start
 │── cloud
 │ │── dummy
 │ │── ec2
 │ │── federation
 │ │── opennebula
 │ │── openstack
 │── create_vm
 │ │── 40_custom
 │ │── create-img-conpaas.sh
 │ │── create-img-script.cfg
 │ │── create-img-script.py
 │ │── README
 │ │── register-image-ec2-ebs.sh
 │ │── register-image-ec2-s3.sh
 │ │── register-image-opennebula.sh
 │ │── scripts
 │ │── 000-head
 │ │── 003-create-image
 │ │── 004-conpaas-core
 │ │── 501-php
 │ │── 502-galera
 │ │── 503-condor
 │ │── 504-selenium
 │ │── 505-hadoop
 │ │── 506-scalaris
 │ │── 507-xtreemfs
 │ │── 508-cds
 │ │── 995-rm-unused-pkgs
 │ │── 996-user
 │ │── 997-tail
 │ │── 998-ec2
 │ │── 998-opennebula
 │ │── 999-resize-image
 │── manager
 │── cds-manager-start
 │── default-git-deploy-hook
 │── default-manager-start
 │── htc-manager-start
 │── htcondor-manager-start
 │── java-manager-start
 │── manager-setup
 │── notify_git_push.py
 │── php-manager-start
 │── taskfarm-manager-start

Implementing a new ConPaaS service using blueprints

Blueprints are service templates you can use to speed up the creation
of a new service. You can use this blueprinting mechanism with
create-new-service-from-blueprints.sh.

The conpaas-blueprints tree contains the following files:

conpaas-blueprints
│── conpaas-client
│ │── cps
│ │── blueprint.py
│── conpaas-frontend
│ │── www
│ │── images
│ │ │── blueprint.png
│ │── js
│ │ │── blueprint.js
│ │── lib
│ │── service
│ │ │── blueprint
│ │ │── __init__.php
│ │── ui
│ │── instance
│ │ │── blueprint
│ │ │── __init__.php
│ │── page
│ │── blueprint
│ │── __init__.php
│── conpaas-services
 │── scripts
 │ │── create_vm
 │ │── scripts
 │ │── 5xx-blueprint
 │── src
 │── conpaas
 │── services
 │── blueprint
 │── agent
 │ │── agent.py
 │ │── client.py
 │ │── __init__.py
 │── __init__.py
 │── manager
 │── client.py
 │── __init__.py
 │── manager.py

Edit create-new-service-from-blueprints.sh
and change the following lines to set up the script:

BP_lc_name=foobar # Lowercase service name in the tree
BP_mc_name=FooBar # Mixedcase service name in the tree
BP_uc_name=FOOBAR # Uppercase service name in the tree
BP_bp_name='Foo Bar' # Selection name as shown on the frontend create.php page
BP_bp_desc='My new FooBar Service' # Description as shown on the frontend create.php page
BP_bp_num=511 # Service sequence number for
 # conpaas-services/scripts/create_vm/create-img-script.cfg
 # Please look in conpaas-services/scripts/create_vm/scripts
 # for the first available number

Running the script in the ConPaaS root will copy the files from the
tree above to the appropriate places in the conpaas-client,
conpaas-frontend and conpaas-services trees. In the
process of copying, the above keywords will be replaced by the values
you entered, and files and directories named *blueprint* will be
replaced by the new service name. Furthermore, the following files
will be adjusted similarly:

conpaas-services/src/conpaas/core/services.py
conpaas-frontend/www/create.php
conpaas-frontend/www/lib/ui/page/PageFactory.php
conpaas-frontend/www/lib/service/factory/__init__.php

Now you are ready to set up the specifics for your service. In most newly created files you will find the following comment

*TODO: as this file was created from a BLUEPRINT file, you may want to
change ports, paths and/or methods (e.g. for hub) to meet your specific
service/server needs*.

So it’s a good idea to do just that.

Implementing a new ConPaaS service by hand

In this section we describe how to implement a new ConPaaS service by
providing an example which can be used as a starting point. The new
service is called helloworld and will just generate helloworld
strings. Thus, the manager will provide a method, called get_helloworld
which will ask all the agents to return a ’helloworld’ string (or
another string chosen by the manager).

We will start by implementing the agent. We will create a class, called
HelloWorldAgent, which implements the required method - get_helloworld,
and put it in conpaas/services/helloworld/agent/agent.py (Note: make
the directory structure as needed and providing empty __init__.py to
make the directory be recognized as a module path). As you can see in
Listing 7, this class uses some functionality
provided in the conpaas.core package. The conpaas.core.expose module
provides a python decorator (@expose) that can be used to expose the
http methods that the agent server dispatches. By using this decorator,
a dictionary containing methods for http requests GET, POST or UPLOAD is
filled in behind the scenes. This dictionary is used by the built-in
server in the conpaas.core package to dispatch the HTTP requests. The
module conpaas.core.http contains some useful methods, like
HttpJsonResponse and HttpErrorResponse that are used to respond to the
HTTP request dispatched to the corresponding method. In this class we
also implemented a method called startup, which only changes the state
of the agent. This method could be used, for example, to make some
initializations in the agent. We will describe later the use of the
other method, check_agent_process.

Listing 7: conpaas/services/helloworld/agent/agent.py
from conpaas.core.expose import expose

from conpaas.core.https.server import HttpJsonResponse, HttpErrorResponse

from conpaas.core.agent import BaseAgent

class HelloWorldAgent(BaseAgent):
 def __init__(self,
 config_parser, # config file
 **kwargs): # anything you can't send in config_parser
 # (hopefully the new service won't need anything extra)
 BaseAgent.__init__(self, config_parser)
 self.gen_string = config_parser.get('agent', 'STRING_TO_GENERATE')

 @expose('POST')
 def startup(self, kwargs):
 self.state = 'RUNNING'
 self.logger.info('Agent started up')
 return HttpJsonResponse()

 @expose('GET')
 def get_helloworld(self, kwargs):
 if self.state != 'RUNNING':
 return HttpErrorResponse('ERROR: Wrong state to get_helloworld')
 return HttpJsonResponse({'result':self.gen_string})

Let’s assume that the manager wants each agent to generate a different
string. The agent should be informed about the string that it has to
generate. To do this, we could either implement a method inside the
agent, that will receive the required string, or specify this string in
the configuration file with which the agent is started. We opted for the
second method just to illustrate how a service could make use of the
config files and also, maybe some service agents/managers need some
information before having been started.

Therefore, we will provide the helloworld-agent.cfg file (see
Listing 8) that will be concatenated to the
default-manager.cfg file. It contains a variable ($STRING) which will be
replaced by the manager.

Listing 8: ConPaaS/config/agent/helloworld-agent.cfg
STRING_TO_GENERATE = $STRING

Now let’s implement an http client for this new agent server. See
Listing 9. This client will be used by the
manager as a wrapper to easily send requests to the agent. We used some
useful methods from conpaas.core.http, to send json objects to the agent
server.

Listing 9: conpaas/services/helloworld/agent/client.py
import json
import httplib

from conpaas.core import https

def _check(response):
 code, body = response
 if code != httplib.OK: raise Exception('Received http response code %d' % (code))
 data = json.loads(body)
 if data['error']: raise Exception(data['error'])
 else: return data['result']

def check_agent_process(host, port):
 method = 'check_agent_process'
 return _check(https.client.jsonrpc_get(host, port, '/', method))

def startup(host, port):
 method = 'startup'
 return _check(https.client.jsonrpc_post(host, port, '/', method))

def get_helloworld(host, port):
 method = 'get_helloworld'
 return _check(https.client.jsonrpc_get(host, port, '/', method))

Next, we will implement the manager in the same manner: we will write
the HelloWorldManager class and place it in the file
conpaas/services/helloworld/manager/manager.py.
(See Listing 10) To make use of the
IaaS abstractions, we need to instantiate a Controller which controls
all the requests to the clouds on which ConPaaS is running. Note the
lines:

1: self.controller = Controller(config_parser)
2: self.controller.generate_context('helloworld')

The first line instantiates a Controller. The controller maintains a
list of cloud objects generated from the config_parser file. There
are several functions provided by the controller which are documented in
the doxygen documentation of file controller.py. The most important
ones, which are also used in the Hello World service implementation,
are: generate_context (which generates a template of the
contextualization file); update_context (which takes the
contextualization template and replaces the variables with the supplied
values); create_nodes (which asks for additional nodes from the
specified cloud or the default one) and delete_nodes (which deletes
the specified nodes).

Note that the create_nodes function accepts as a parameter a function
(in our case check_agent_process) that tests if the agent process
started correctly in the agent VM. If an exception is generated during
the calls to this function for a given period of time, then the manager
assumes that the agent process didn’t start correctly and tries to start
the agent process on a different agent VM.

Listing 10: conpaas/services/helloworld/manager/manager.py
from threading import Thread

from conpaas.core.expose import expose
from conpaas.core.manager import BaseManager

from conpaas.core.https.server import HttpJsonResponse, HttpErrorResponse

from conpaas.services.helloworld.agent import client

class HelloWorldManager(BaseManager):

 # Manager states - Used by the Director
 S_INIT = 'INIT' # manager initialized but not yet started
 S_PROLOGUE = 'PROLOGUE' # manager is starting up
 S_RUNNING = 'RUNNING' # manager is running
 S_ADAPTING = 'ADAPTING' # manager is in a transient state - frontend will keep
 # polling until manager out of transient state
 S_EPILOGUE = 'EPILOGUE' # manager is shutting down
 S_STOPPED = 'STOPPED' # manager stopped
 S_ERROR = 'ERROR' # manager is in error state

 AGENT_PORT = 5555

 def __init__(self, config_parser, **kwargs):
 BaseManager.__init__(self, config_parser)
 self.nodes = []
 # Setup the clouds' controller
 self.controller.generate_context('helloworld')
 self.state = self.S_INIT

 def _do_startup(self, cloud):
 startCloud = self._init_cloud(cloud)

 self.controller.add_context_replacement(dict(STRING='helloworld'))

 try:
 nodes = self.controller.create_nodes(1,
 client.check_agent_process, self.AGENT_PORT, startCloud)

 node = nodes[0]

 client.startup(node.ip, self.AGENT_PORT)

 # Extend the nodes list with the newly created one
 self.nodes += nodes
 self.state = self.S_RUNNING
 except Exception, err:
 self.logger.exception('_do_startup: Failed to create node: %s' % err)
 self.state = self.S_ERROR

 @expose('POST')
 def shutdown(self, kwargs):
 self.state = self.S_EPILOGUE
 Thread(target=self._do_shutdown, args=[]).start()
 return HttpJsonResponse()

 def _do_shutdown(self):
 self.controller.delete_nodes(self.nodes)
 self.nodes = []
 self.state = self.S_STOPPED

 @expose('POST')
 def add_nodes(self, kwargs):
 if self.state != self.S_RUNNING:
 return HttpErrorResponse('ERROR: Wrong state to add_nodes')

 if 'node' in kwargs:
 kwargs['count'] = kwargs['node']

 if not 'count' in kwargs:
 return HttpErrorResponse("ERROR: Required argument doesn't exist")

 if not isinstance(kwargs['count'], int):
 return HttpErrorResponse('ERROR: Expected an integer value for "count"')

 count = int(kwargs['count'])

 cloud = kwargs.pop('cloud', 'iaas')
 try:
 cloud = self._init_cloud(cloud)
 except Exception as ex:
 return HttpErrorResponse(
 "A cloud named '%s' could not be found" % cloud)

 self.state = self.S_ADAPTING
 Thread(target=self._do_add_nodes, args=[count, cloud]).start()
 return HttpJsonResponse()

 def _do_add_nodes(self, count, cloud):
 node_instances = self.controller.create_nodes(count,
 client.check_agent_process, self.AGENT_PORT, cloud)

 self.nodes += node_instances
 # Startup agents
 for node in node_instances:
 client.startup(node.ip, self.AGENT_PORT)

 self.state = self.S_RUNNING
 return HttpJsonResponse()

 @expose('GET')
 def list_nodes(self, kwargs):
 if len(kwargs) != 0:
 return HttpErrorResponse('ERROR: Arguments unexpected')

 if self.state != self.S_RUNNING:
 return HttpErrorResponse('ERROR: Wrong state to list_nodes')

 return HttpJsonResponse({
 'helloworld': [node.id for node in self.nodes],
 })

 @expose('GET')
 def get_service_info(self, kwargs):
 if len(kwargs) != 0:
 return HttpErrorResponse('ERROR: Arguments unexpected')

 return HttpJsonResponse({'state': self.state, 'type': 'helloworld'})

 @expose('GET')
 def get_node_info(self, kwargs):
 if 'serviceNodeId' not in kwargs:
 return HttpErrorResponse('ERROR: Missing arguments')

 serviceNodeId = kwargs.pop('serviceNodeId')

 if len(kwargs) != 0:
 return HttpErrorResponse('ERROR: Arguments unexpected')

 serviceNode = None
 for node in self.nodes:
 if serviceNodeId == node.id:
 serviceNode = node
 break

 if serviceNode is None:
 return HttpErrorResponse('ERROR: Invalid arguments')

 return HttpJsonResponse({
 'serviceNode': {
 'id': serviceNode.id,
 'ip': serviceNode.ip
 }
 })

 @expose('POST')
 def remove_nodes(self, kwargs):
 if self.state != self.S_RUNNING:
 return HttpErrorResponse('ERROR: Wrong state to remove_nodes')

 if 'node' in kwargs:
 kwargs['count'] = kwargs['node']

 if not 'count' in kwargs:
 return HttpErrorResponse("ERROR: Required argument doesn't exist")

 if not isinstance(kwargs['count'], int):
 return HttpErrorResponse('ERROR: Expected an integer value for "count"')

 count = int(kwargs['count'])
 self.state = self.S_ADAPTING
 Thread(target=self._do_remove_nodes, args=[count]).start()
 return HttpJsonResponse()

 def _do_remove_nodes(self, count):
 for _ in range(0, count):
 self.controller.delete_nodes([self.nodes.pop()])

 self.state = self.S_RUNNING
 return HttpJsonResponse()

 @expose('GET')
 def get_helloworld(self, kwargs):
 if self.state != self.S_RUNNING:
 return HttpErrorResponse('ERROR: Wrong state to get_helloworld')

 messages = []

 # Just get_helloworld from all the agents
 for node in self.nodes:
 data = client.get_helloworld(node.ip, self.AGENT_PORT)
 message = 'Received %s from %s' % (data['result'], node.id)
 self.logger.info(message)
 messages.append(message)

 return HttpJsonResponse({ 'helloworld': "\n".join(messages) })

We can also implement a client for the manager server (see
Listing 11). This will allow us to use the
command line interface to send requests to the manager, if the frontend
integration is not available.

Listing 11: conpaas/services/helloworld/manager/client.py
import httplib , json
from conpaas.core.http import HttpError, _jsonrpc_get, _jsonrpc_post, _http_post, _http_get

def _check(response):
 code, body = response
 if code != httplib.OK: raise HttpError('Received http response code %d' % (code))
 data = json.loads(body)
 if data['error']: raise Exception(data['error'])
 else : return data['result']

def get_service_info(host, port):
 method = 'get_service_info'
 return _check(_jsonrpc_get(host, port , '/' , method))

def get_helloworld(host, port):
 method = 'get_helloworld'
 return _check(_jsonrpc_get(host, port , '/' , method))

def startup(host, port):
 method = 'startup'
 return _check(_jsonrpc_get(host, port , '/' , method))

def add_nodes(host, port , count=0):
 method = 'add_nodes'
 params = {}
 params['count'] = count
 return _check(_jsonrpc_post(host, port , '/', method, params=params))

def remove_nodes(host , port , count=0):
 method = 'remove_nodes'
 params = {}
 params['count'] = count
 return _check(_jsonrpc_post(host, port , '/', method, params=params))

def list_nodes(host, port):
 method = 'list_nodes'
 return _check(_jsonrpc_get(host, port , '/' , method))

The last step is to register the new service to the conpaas core. One
entry must be added to file conpaas/core/services.py, as it is
indicated in Listing 12. Because the Java and PHP
services use the same code for the agent, there is only one entry in the
agent services, called web which is used by both webservices.

Listing 12: conpaas/core/services.py
-*- coding: utf-8 -*-

"""
 conpaas.core.services
 =====================

 ConPaaS core: map available services to their classes.

 :copyright: (C) 2010-2013 by Contrail Consortium.
"""

manager_services = {'php' : {'class' : 'PHPManager',
 'module': 'conpaas.services.webservers.manager.internal.php'},
 'java' : {'class' : 'JavaManager',
 'module': 'conpaas.services.webservers.manager.internal.java'},
 'scalaris' : {'class' : 'ScalarisManager',
 'module': 'conpaas.services.scalaris.manager.manager'},
 'hadoop' : {'class' : 'MapReduceManager',
 'module': 'conpaas.services.mapreduce.manager.manager'},
 'helloworld' : {'class' : 'HelloWorldManager',
 'module': 'conpaas.services.helloworld.manager.manager'},
 'xtreemfs' : {'class' : 'XtreemFSManager',
 'module': 'conpaas.services.xtreemfs.manager.manager'},
 'selenium' : {'class' : 'SeleniumManager',
 'module': 'conpaas.services.selenium.manager.manager'},
 'taskfarm' : {'class' : 'TaskFarmManager',
 'module': 'conpaas.services.taskfarm.manager.manager'},
		 'galera' : {'class' : 'GaleraManager',
 'module': 'conpaas.services.galera.manager.manager'},

'htcondor' : {'class' : 'HTCondorManager',
'module': 'conpaas.services.htcondor.manager.manager'},
 'htc' : {'class' : 'HTCManager',
 'module': 'conpaas.services.htc.manager.manager'},
 'generic' : {'class' : 'GenericManager',
 'module': 'conpaas.services.generic.manager.manager'},

#""" BLUE_PRINT_INSERT_MANAGER 		do not remove this line: it is a placeholder for installing new services """
		 }

agent_services = {'web' : {'class' : 'WebServersAgent',
 'module': 'conpaas.services.webservers.agent.internals'},
 'scalaris' : {'class' : 'ScalarisAgent',
 'module': 'conpaas.services.scalaris.agent.agent'},
 'mapreduce' : {'class' : 'MapReduceAgent',
 'module': 'conpaas.services.mapreduce.agent.agent'},
 'helloworld' : {'class' : 'HelloWorldAgent',
 'module': 'conpaas.services.helloworld.agent.agent'},
 'xtreemfs' : {'class' : 'XtreemFSAgent',
 'module': 'conpaas.services.xtreemfs.agent.agent'},
 'selenium' : {'class' : 'SeleniumAgent',
 'module': 'conpaas.services.selenium.agent.agent'},
 		 'galera' : {'class' : 'GaleraAgent',
 'module': 'conpaas.services.galera.agent.internals'},

'htcondor' : {'class' : 'HTCondorAgent',
'module': 'conpaas.services.htcondor.agent.agent'},
 'htc' : {'class' : 'HTCAgent',
 'module': 'conpaas.services.htc.agent.agent'},
 'generic' : {'class' : 'GenericAgent',
 'module': 'conpaas.services.generic.agent.agent'},
#""" BLUE_PRINT_INSERT_AGENT 		do not remove this line: it is a placeholder for installing new services """
		 }

Integrating the new service with the frontend

So far there is no easy way to add a new frontend service. Each service
may require distinct graphical elements. In this section we explain how
the Hello World frontend service has been created.

Manager states

As you have noticed in the Hello World manager implementation, we used
some standard states, e.g. INIT, ADAPTING, etc. By calling the
get_service_info function, the frontend knows in which state the
manager is. Why do we need these standardized stated? As an example, if
the manager is in the ADAPTING state, the frontend would know to draw a
loading icon on the interface and keep polling the manager.

Files to be modified

frontend
│── www
 │── create.php
 │── lib
 │── service
 │── factory
 │── __init__.php

Several lines of code must be added to the two files above for the new
service to be recognized. If you look inside these files, you’ll see
that knowing where to add the lines and what lines to add is
self-explanatory.

Files to be added

frontend
│── www
 │── lib
 | │── service
 | | │── helloworld
 | | │── __init__.php
 | │── ui
 | │── instance
 | │── helloworld
 | │── __init__.php
 │── images
 │── helloworld.png

Creating A ConPaaS Services VM Image

Various services require certain packages and configurations to be present in
the VM image. ConPaaS provides facilities for creating specialized VM images
that contain these dependencies. Furthermore, for the convenience of users,
there are prebuilt images that contain the dependencies for all available
services. If you intend to use these images and do not need a specialized VM
image, then you can skip this section.

Configuring your VM image

The configuration file for customizing your VM image is located at
conpaas-services/scripts/create_vm/create-img-script.cfg.

In the CUSTOMIZABLE section of the configuration file, you can define
whether you plan to run ConPaaS on Amazon EC2, OpenStack or OpenNebula. Depending
on the virtualization technology that your target cloud uses, you should choose
either KVM or Xen for the hypervisor. Note that for Amazon EC2 this variable
needs to be set to Xen. Please do not make the recommended size for the image
file smaller than the default. The optimize flag enables certain optimizations
to reduce the necessary packages and disk size. These optimizations allow for
smaller VM images and faster VM startup.

In the SERVICES section of the configuration file, you have the opportunity
to disable any service that you do not need in your VM image. If a service is
disabled, its package dependencies are not installed in the VM image. Paired
with the optimize flag, the end result will be a minimal VM image that runs
only what you need.

Note that te configuration file contains also a NUTSHELL section. The
settings in this section are explained in details in ConPaaS in a Nutshell.
However, in order to generate a regular customized VM image, make sure that both
container and nutshell flags in this section are set to false.

Once you are done with the configuration, you should run this command in the
create_vm directory:

$ python create-img-script.py

This program generates a script file named create-img-conpaas.sh. This script
is based on your specific configurations.

Creating your VM image

To create the image you can execute create-img-conpaas.sh in any 64-bit
Debian or Ubuntu machine. Please note that you will need to have root
privileges on such a system. In case you do not have root access to a Debian or
Ubuntu machine please consider installing a virtual machine using your favorite
virtualization technology, or running a Debian/Ubuntu instance in the cloud.

	Make sure your system has the following executables installed (they
are usually located in /sbin or /usr/sbin, so make sure these
directories are in your $PATH): dd parted losetup kpartx
mkfs.ext3 tune2fs mount debootstrap chroot umount grub-install

	It is particularly important that you use Grub version 2. To install
it:

sudo apt-get install grub2

	Execute create-img-conpaas.sh as root.

The last step can take a very long time. If all goes well, the final VM image
is stored as conpaas.img. This file is later registered to your target IaaS
cloud as your ConPaaS services image.

If things go wrong

Note that if anything fails during the image file creation, the script
will stop and it will try to revert any change it has done. However, it
might not always reset your system to its original state. To undo
everything the script has done, follow these instructions:

	The image has been mounted as a separate file system. Find the
mounted directory using command df -h. The directory should be in
the form of /tmp/tmp.X.

	There may be a dev and a proc directories mounted inside it.
Unmount everything using:

sudo umount /tmp/tmp.X/dev /tmp/tmp.X/proc /tmp/tmp.X

	Find which loop device you are using:

sudo losetup -a

	Remove the device mapping:

sudo kpartx -d /dev/loopX

	Remove the binding of the loop device:

sudo losetup -d /dev/loopX

	Delete the image file

	Your system should be back to its original state.

Creating a Nutshell image

Starting with the release 1.4.1, ConPaaS is shipped together with a VirtualBox
appliance containing the Nutshell VM image. This section explains how to create
a similar image that can be deployed on a different virtualization technology
(such as the other clouds supported by ConPaaS). The next section describes the
procedure for recreating the VirtualBox image. If you are interested only in
installing the standard VirtualBox image that is shipped with ConPaaS, you may
skip this chapter entirely and only read the installation guide available here:
ConPaaS in a Nutshell.

The procedure for creating a Nutshell image is very similar to the one for
creating a standard customized image described in section Creating A ConPaaS Services VM Image.
However, there are a few settings in the configuration file which need
to be considered.

Most importantly, there are two flags in the Nutshell section of the
configuration file, nutshell and container which control the kind of image
that is going to be generated. Since these two flags can take either value
true of false, we distinguish four cases:

	nutshell = false, container = false: In this case a standard ConPaaS VM
image is generated and the nutshell configurations are not taken into
consideration. This is the default configuration which should be used when
ConPaaS is deployed on a standard cloud.

	nutshell = false, container = true: In this case the user indicates that
the image that will be generated will be a LXC container image. This image
is similar to a standard VM one, but it does not contain a kernel installation.

	nutshell = true, container = false. In this case a Nutshell image is
generated and a standard ConPaaS VM image will be embedded in it. This
configuration should be used for deploying ConPaaS in nested standard VMs
within a single VM.

	nutshell = true, container = true. Similar to the previous case, a Nutshell
image is generated but this time a container image is embedded in it instead
of a VM one. Therefore, in order to generate a Nutshell based on LXC containers,
make sure to set these flags to this configuration. This is the default
configuration for our distribution of the Nutshell.

Another important setting for generating the Nutshell image is also the path to
a directory containing the ConPaaS tarballs (cps*.tar.gz files). The rest of the
settings specify the distro and kernel versions that the Nutshell VM would have.
For the moment we have tested it only for Ubuntu 12.04 with kernel 3.5.0.

In order to run the image generating script, the procedure is almost the same
as for a standard image. From the create_vm directory run:

$ python create-img-script.py
$ sudo ./create-img-nutshell.sh

Note that if the nutshell flag is enabled the generated script file is called
create-img-nutshell.sh. Otherwise, the generated script file is called
create-img-conpaas.sh as indicated previously.

Creating a Nutshell image for VirtualBox

As mentioned earlier the Nutshell VM can also run on VirtualBox. In order to
generate a Nutshell image compatible with VirtualBox, you have to set the
cloud value to vbox in the Customizable section of the configuration
file. The rest of the procedure is the same as for other clouds. The result
of the image generation script would be a nutshell.vdi image file which
can be used as a virtual hard drive when creating a new appliance on VirtualBox.

The procedure for creating a new appliance on VirtualBox is quite standard:

	Name and OS: You choose a custom name for the appliance but use Linux and
Ubuntu (64 bit) for the type and version.

	Memory size: Since the Nutshell runs a significant number of services and
also requires some memory for the containers, we suggest to choose at least
3 GB of RAM.

	Hard drive: Select “User an existing virtual hard drive file”, browse to the
location of the nutshell.vdi file generated earlier and press create.

Preinstalling an application into a ConPaaS Services Image

A ConPaaS Services Image contains all the necessary components needed in order
to run the ConPaaS services. For deploying arbitrary applications using ConPaaS,
the The Generic service provides a mechanism to install and run the application,
along with its dependencies. The installation, however, has to happen during the
initialization of every new node that is started, for example in the init.sh
script of the Generic Service. If installing the application with its dependencies
takes a long time or, in general, is not desired to happen during every deployment
of a new node, another option is available: preinstalling the application inside the
ConPaaS Services Image. The current section describes this process.

	Download a ConPaaS Services Image appropriate for your computer architecture
and virtualization technology. Here are the download links for the latest images:

	ConPaaS VM image for Amazon EC2 (x86_64):

	
http://www.conpaas.eu/dl/conpaas-amazon.img

MD5: f883943fa01c5b1c094d6dddeb64da86

size: 2.0 GB

	ConPaaS VM image for OpenStack with KVM (x86_64):

	
http://www.conpaas.eu/dl/conpaas-openstack-kvm.img

MD5: 28299ac49cc216dde57b107000078c4f

size: 1.8 GB

	ConPaaS VM image for OpenStack with LXC (x86_64):

	
http://www.conpaas.eu/dl/conpaas-openstack-lxc.img

MD5: 45296e4cfcd44325a13703dc67da1d0b

size: 1.8 GB

	ConPaaS VM image for OpenNebula with KVM (x86_64):

	
http://www.conpaas.eu/dl/conpaas-opennebula-kvm.img

MD5: 32022d0e50f3253b121198d30c336ae8

size: 2.0 GB

	ConPaaS VM image for OpenStack with LXC for the Raspberry Pi (arm):

	
http://www.conpaas.eu/dl/ConPaaS-RPI/conpaas-rpi.img

MD5: c29cd086e8e0ebe7f0793e7d54304da4

size: 2.0 GB

Warning

If you choose to use one of the images above, it is always a good idea to check
its integrity before continuing to the next step. A corrupt image may result in
unexpected behaviour which may be hard to trace. You can check the integrity by
verifying the MD5 hash with the md5sum command.

Alternatively, you can also create one such image using the instructions provided
in the section Creating A ConPaaS Services VM Image.

The following steps will use as an example the image for the Raspberry PI.
For other architecture or virtualization technologies, the commands are the
same.

Warning

The following steps need to be performed on a machine with the same architecture
and a similar operating system. For the regular images, this means the 64 bit
version of a Debian or Ubuntu system. For the Raspberry PI image, the steps need
to be performed on the Raspberry PI itself (with a Raspbian installation, arm
architecture). Trying to customize the Raspberry PI image on a x86 system will not
work!

	Log in as root and change to the directory where you downloaded the image.

	(Optional) If you need to expand the size of the image, you can do it right now.
As the image is in the raw format, expanding the size can be done by increasing
the size of the image file. For example, to increase the size with 1 GB:

root@raspberrypi:/home/pi# dd if=/dev/zero bs=4M count=256 >> conpaas-rpi.img
256+0 records in
256+0 records out
1073741824 bytes (1.1 GB) copied, 56.05551 s, 19 MB/s

If you have the package qemu-utils installed, you can also use qemu-img
instead:

root@raspberrypi:/home/pi# qemu-img resize conpaas-rpi.img +1G
Image resized.

	Map a loop device to the ConPaaS image:

root@raspberrypi:/home/pi# losetup -fv conpaas-rpi.img
Loop device is /dev/loop0

Warning

If you already have other loop devices in use, the output of this command may
contain a different loop device. Take a note of it and replace loop0 with the
correct device in the following commands.

	If you increased the size of the image in step 3, you now need to also expand the
file system. First, check the integrity of the file system with the following
command:

root@raspberrypi:/home/pi# e2fsck -f /dev/loop0
e2fsck 1.42.9 (4-Feb-2014)
Pass 1: Checking inodes, blocks, and sizes
Pass 2: Checking directory structure
Pass 3: Checking directory connectivity
Pass 4: Checking reference counts
Pass 5: Checking group summary information
root: 44283/117840 files (9.1% non-contiguous), 409442/470528 blocks

You can now expand the file system:

root@raspberrypi:/home/pi# resize2fs /dev/loop0
resize2fs 1.42.9 (4-Feb-2014)
Resizing the filesystem on /dev/loop0 to 732672 (4k) blocks.
The filesystem on /dev/loop0 is now 732672 blocks long.

	Create a new directory and mount the image to it:

root@raspberrypi:/home/pi# mkdir conpaas-img
root@raspberrypi:/home/pi# mount /dev/loop0 conpaas-img/

Now you can access the contents of the image inside the conpaas-img directory.

	Copy your application’s binaries and any other static content that you want to
include in the image somewhere under the conpaas-img directory.

	To install any prerequisites, you may want to change the root directory to
conpaas-img. But first, you will need to mount /dev, /dev/pts and /proc
in the conpaas-img directory (which will become the new root directory), or
else the installation of some packages may fail:

root@raspberrypi:/home/pi# mount -obind /dev conpaas-img/dev
root@raspberrypi:/home/pi# mount -obind /dev/pts conpaas-img/dev/pts
root@raspberrypi:/home/pi# mount -t proc proc conpaas-img/proc

	You can now execute the chroot:

root@raspberrypi:/home/pi# chroot conpaas-img

Your root directory is now the root of the image.

	To use apt-get, you need to set a working DNS server:

root@raspberrypi:/# echo "nameserver 8.8.8.8" > /etc/resolv.conf

This example uses the Google Public DNS, you may however use any DNS server you
prefer.

Check that the Internet works in this new environment:

root@raspberrypi:/# ping www.conpaas.eu
PING carambolier.irisa.fr (131.254.150.34) 56(84) bytes of data.
64 bytes from carambolier.irisa.fr (131.254.150.34): icmp_seq=1 ttl=50 time=35.8 ms
[... output omitted ...]

	Use apt-get to install any packages that your application requires:

root@raspberrypi:/# apt-get update
Hit http://archive.raspbian.org wheezy Release.gpg
Hit http://archive.raspbian.org wheezy Release
[... output omitted ...]

root@raspberrypi:/# apt-get install <...>

	Make the final configurations (if needed) and make sure that everything works.

	Clean-up:

Exit the chroot:

root@raspberrypi:/# exit
exit
root@raspberrypi:/home/pi#

Unmount /dev, /dev/pts and /proc:

root@raspberrypi:/home/pi# umount conpaas-img/proc
root@raspberrypi:/home/pi# umount conpaas-img/dev/pts
root@raspberrypi:/home/pi# umount conpaas-img/dev

Unmount the image:

root@raspberrypi:/home/pi# umount conpaas-img

Remove the directory:

root@raspberrypi:/home/pi# rm -r conpaas-img

Delete the loop device mapping:

root@raspberrypi:/home/pi# losetup -d /dev/loop0

That’s it! Now the file conpaas-rpi.img contains the new ConPaaS image
with your application pre-installed.

You can now register the new image to the cloud of your choice and update the
ConPaaS Director’s settings to use the new image. Instructions are available
in the Installation guide:

	For Amazon EC2:

	Registering your custom VM image to Amazon EC2

	For OpenStack:

	Registering your ConPaaS image to OpenStack

	For OpenNebula:

	Registering your ConPaaS image to OpenNebula

 Copyright 2012-2015, Contrail and HARNESS consortia.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 previous |

 	ConPaaS 1.5.1 documentation

Application Programming Interface

ConPaaS services are composed by a manager and one or more agents: the
manager’s role is to oversee the functioning of a specific service. ConPaaS
managers are responsible, among other things, for starting up and shutting down
ConPaaS agents, which in turn provide the functionality offered by a specific
service.

ConPaaS services are created and administered exclusively through an HTTP /
JSON Application Programming Interface exposed by a web service called ConPaaS
Director. This document provides a description of such an API.

Python API

RESTful API

Let us list the ConPaaS API methods, together with a brief description
of their behavior.

POST /new_user

 Create a new ConPaaS user. The method expects the following parameters:

 'username', 'fname', 'lname', 'email', 'affiliation', 'password', 'credit', 'uuid'

 A dictionary of user values is returned upon successful user creation.
 The following dictionary is returned on failure:

 {
 'error': True,
 'msg': 'An explanatory error message'
 }

POST /login

 Authenticates the given user. The following parameters are expected:
 'username', 'password'

 A dictionary of user values is returned upon successful authentication.
 False is returned otherwise.

POST /get_user_certs

 Create and send SSL certificates for the given user. 'username' and
 'password' are the expected parameters. A zip archive containing the SSL
 certificates is returned on success, False otherwise.

GET /available_services

 Return a list of available service types. For example:
 ['scalaris', 'selenium', 'hadoop', 'mysql', 'java', 'php']

POST /start/<servicetype>

 Return a dictionary with service data (manager's vmid and IP address,
 service name and ID) in case of correct service creation. False is returned
 otherwise. Only service types returned by the 'available_services' method
 described above are allowed.

 This method requires the client to present a valid SSL certificate.

POST /stop/<serviceid>

 Return a boolean value. True in case of proper service termination, false
 otherwise. <serviceid> has to be an integer representing the service id of a
 running service.

 This method requires the client to present a valid SSL certificate.

POST /rename/<serviceid>

 Rename the given service. The new name 'name' is the only required
 argument. Return true on successful renaming, false otherwise.

GET /list

 List running ConPaaS services. Return data as a list of dictionaries
 (associative arrays).

 This method requires the client to present a valid SSL certificate.

GET /download/ConPaaS.tar.gz

 Used by ConPaaS services. Download a tarball with the ConPaaS source code.

POST /callback/decrementUserCredit.php

 Used by ConPaaS services. 'sid' and 'decrement' are the required parameters.

 Decrement user credit and check if it is enough. Return a dictionary with
 the 'error' attribute set to false if the user had enough credit, true
 otherwise.

 This method requires the client to present a valid SSL certificate of type
 'manager'. The 'serviceLocator' field in the supplied certificate has to match
 the 'sid'.

POST /ca/get_cert.php

 Used by ConPaaS services. The only required argument is a file called 'csr'
 holding a certificate signing request. A certificate is returned.

 This method requires the client to present a valid SSL certificate of type
 'manager'..

The first three methods, namely new_user, login and
get_user_certs do not need a client SSL certificate to be called.

available_services, start, stop, rename and list
all need a valid user certificate in order to be called.

The last two methods are used by ConPaaS managers to decrement users’
credit and create agent certificates. They both need a valid manager
certificate to be called.

 Copyright 2012-2015, Contrail and HARNESS consortia.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	ConPaaS 1.5.1 documentation

Index

 C
 | D
 | E
 | O
 | V

C

 	

 	CONPAAS_CONF_DIR

D

 	

 	DIRECTOR_URL, [1]

E

 	

 	
 environment variable

 	

 	CONPAAS_CONF_DIR

 	DIRECTOR_URL, [1]

 	OTHER_CLOUDS, [1]

 	VPN_BASE_NETWORK, [1]

 	VPN_BOOTSTRAP_NODES

 	VPN_NETMASK, [1], [2]

 	VPN_SERVICE_BITS, [1], [2]

O

 	

 	OTHER_CLOUDS, [1]

V

 	

 	VPN_BASE_NETWORK, [1]

 	VPN_BOOTSTRAP_NODES

 	

 	VPN_NETMASK, [1], [2]

 	VPN_SERVICE_BITS, [1], [2]

 Copyright 2012-2015, Contrail and HARNESS consortia.
 Created using Sphinx 1.3.1.

 _static/up.png

_static/up-pressed.png

_static/comment.png

_static/comment-close.png

_static/comment-bright.png

_static/minus.png

_static/file.png

_static/down.png

manual.html

 Navigation

 		
 index

 		ConPaaS 1.5.1 documentation »

ConPaaS Manual

		Introduction

		Installation
		Director installation

		Command line tool installation

		Frontend installation

		ConPaaS on Amazon EC2

		ConPaaS on OpenStack

		ConPaaS on OpenNebula

		ConPaaS in a Nutshell

		ConPaaS on Raspberry PI

		User Guide
		Usage overview

		Tutorial: hosting WordPress in ConPaaS

		The PHP Web hosting service

		The Java Web hosting service

		The MySQL Database Service

		The Scalarix key-value store service

		The MapReduce service

		The TaskFarming service

		The XtreemFS service

		The HTC service

		The Generic service

		ConPaaS in a VirtualBox Nutshell

		ConPaaS on Raspberry PI

		Internals
		Introduction

		Service Organization

		Implementing a new ConPaaS service using blueprints

		Implementing a new ConPaaS service by hand

		Integrating the new service with the frontend

		Creating A ConPaaS Services VM Image

		Creating a Nutshell image

		Preinstalling an application into a ConPaaS Services Image

 © Copyright 2012-2015, Contrail and HARNESS consortia.
 Created using Sphinx 1.3.1.

search.html

 Navigation

 		
 index

 		ConPaaS 1.5.1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2012-2015, Contrail and HARNESS consortia.
 Created using Sphinx 1.3.1.

_static/ajax-loader.gif

_static/down-pressed.png

_static/plus.png

